High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin

Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments...

Full description

Saved in:
Bibliographic Details
Main Author: Salehmin, Mohd Nur Ikhmal
Format: Thesis
Published: 2014
Subjects:
Online Access:http://studentsrepo.um.edu.my/4934/1/Final_Thesis_Mohd_Nur_Ikhmal_(SGR110026).pdf
http://studentsrepo.um.edu.my/4934/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.stud.4934
record_format eprints
spelling my.um.stud.49342015-03-05T04:15:20Z High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin Salehmin, Mohd Nur Ikhmal Q Science (General) Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments. Compared to foaming-dependent feeding and the pHstat operation, the specific growth rate control of feeding proved to be the most successful. At the specific growth rate control set point of 0.05 h1, the final lipase activity in the culture broth was the highest at 700 U L1. This was 2.6-fold higher than the final enzyme activity obtained at a specific growth rate control set point of 0.15 h1. The peak enzyme concentration achieved using the best foaming-dependent control of feeding was around 28% of the peak activity attained using the specific growth rate control of feeding at 0.05 h1. Similarly, the peak enzyme concentration attained using the pH-stat feeding operations was a mere 9% of the peak activity attained by specific growth rate control of feeding at a setpoint of 0.05 h1. The highest biomass specific productivity of the enzyme was 0.19 U g1 h1 for the fed-batch operation with the specific growth rate controlled at 0.05 h1. Fedbatch fermentations were performed in a 2-L stirred-tank bioreactor (30 C, pH 7) with the dissolved oxygen level controlled at 30% of air saturation. Investigation on gas-liquid and liquid-liquid mass transfers by experimental and theoretical means was also carried out. The investigation was simulated in xanthan gum solution which resembles the viscosity of High Cell Density Fermentation (HCDF) at 1.68 mPa.s. Established correlations were successfully used to predict kLa value at different agitation rate ranging from 200-800 rpm for both oil and oxygen mass transfers under HCDF condition. However, the correlations failed to predict kLa value at the highest agitation rate used (1000 rpm) for liquid-liquid mass transfer. 2014 Thesis NonPeerReviewed application/pdf http://studentsrepo.um.edu.my/4934/1/Final_Thesis_Mohd_Nur_Ikhmal_(SGR110026).pdf Salehmin, Mohd Nur Ikhmal (2014) High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin. Masters thesis, University of Malaya. http://studentsrepo.um.edu.my/4934/
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Student Repository
url_provider http://studentsrepo.um.edu.my/
topic Q Science (General)
spellingShingle Q Science (General)
Salehmin, Mohd Nur Ikhmal
High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin
description Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments. Compared to foaming-dependent feeding and the pHstat operation, the specific growth rate control of feeding proved to be the most successful. At the specific growth rate control set point of 0.05 h1, the final lipase activity in the culture broth was the highest at 700 U L1. This was 2.6-fold higher than the final enzyme activity obtained at a specific growth rate control set point of 0.15 h1. The peak enzyme concentration achieved using the best foaming-dependent control of feeding was around 28% of the peak activity attained using the specific growth rate control of feeding at 0.05 h1. Similarly, the peak enzyme concentration attained using the pH-stat feeding operations was a mere 9% of the peak activity attained by specific growth rate control of feeding at a setpoint of 0.05 h1. The highest biomass specific productivity of the enzyme was 0.19 U g1 h1 for the fed-batch operation with the specific growth rate controlled at 0.05 h1. Fedbatch fermentations were performed in a 2-L stirred-tank bioreactor (30 C, pH 7) with the dissolved oxygen level controlled at 30% of air saturation. Investigation on gas-liquid and liquid-liquid mass transfers by experimental and theoretical means was also carried out. The investigation was simulated in xanthan gum solution which resembles the viscosity of High Cell Density Fermentation (HCDF) at 1.68 mPa.s. Established correlations were successfully used to predict kLa value at different agitation rate ranging from 200-800 rpm for both oil and oxygen mass transfers under HCDF condition. However, the correlations failed to predict kLa value at the highest agitation rate used (1000 rpm) for liquid-liquid mass transfer.
format Thesis
author Salehmin, Mohd Nur Ikhmal
author_facet Salehmin, Mohd Nur Ikhmal
author_sort Salehmin, Mohd Nur Ikhmal
title High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin
title_short High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin
title_full High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin
title_fullStr High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin
title_full_unstemmed High cell density fermentation of Candida rugosa on palm oil for lipase production and its mass transfer investigation / Mohd Nur Ikhmal bin Salehmin
title_sort high cell density fermentation of candida rugosa on palm oil for lipase production and its mass transfer investigation / mohd nur ikhmal bin salehmin
publishDate 2014
url http://studentsrepo.um.edu.my/4934/1/Final_Thesis_Mohd_Nur_Ikhmal_(SGR110026).pdf
http://studentsrepo.um.edu.my/4934/
_version_ 1738505729867776000
score 13.211869