Hybrid modelling and kinetic estimation for polystyrene batch reactor using Artificial Neutral Network (ANN) approach

Modelling polymerization processes involves considerable uncertainties due to the intricate polymerization reaction mechanism involved. The complex reaction kinetics results in highly nonlinear process dynamics. Available conventional models are limited in applicability and cannot describe accuratel...

Full description

Saved in:
Bibliographic Details
Main Authors: Hosen, M.A., Hussain, Mohd Azlan, Mjalli, F.S.
Format: Article
Published: Wiley 2011
Subjects:
Online Access:http://eprints.um.edu.my/7016/
https://doi.org/10.1002/Apj.435
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modelling polymerization processes involves considerable uncertainties due to the intricate polymerization reaction mechanism involved. The complex reaction kinetics results in highly nonlinear process dynamics. Available conventional models are limited in applicability and cannot describe accurately the actual physico-chemical characteristics of the reactor dynamics. The usual practice for operating polymerization reactors is to optimize the reactor temperature profile because the end use properties of the product polymer depend highly on temperature. However, to obtain accurate models in order to optimize the temperature profile, the kinetic parameters (i.e. frequency factors and activation energies) for a specific reactor must be determined accurately. Kinetic parameters vary considerably in batch reactors because of its high sensitivity to other reactor design and operational variables such as agitator geometry and speed, gel effects, heating systems, etc. In this work, the kinetic parameters were estimated for a styrene-free radical polymerization conducted in an experimental batch reactor system using a nonlinear least squares optimization algorithm. The estimated kinetic parameters were correlated with respect to reactor operating variables including initial reactor temperature (T o), initial initiator concentration (I o) and heat duty (Q) using artificial neural network (ANN) techniques. The ANN kinetic model was then utilized in combination with the conventional mechanistic model. The experimental validation of the model revealed that the new model has high prediction capabilities compared withother reported models.