The effects of different bioceramics-incorporated oxide films on titanium implant by plasma electrolytic oxidation

In this paper, the effect of commercial hydroxyapatite (CHA) and bovine, derived hydroxyapatite (BHA) ceramics on the structure, corrosion, and biological response of Ti6Al4V anodic coatings were studied. The XRD results indicated that the coatings consist of TiO2, NaTi2 (PO4)(3) and HA, whereas spe...

Full description

Saved in:
Bibliographic Details
Main Author: Adeleke, Sakiru Adekunle
Format: Article
Published: SPRINGER HEIDELBERG 2022
Subjects:
Online Access:http://eprints.um.edu.my/46223/
https://doi.org/10.1557/s43578-022-00804-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the effect of commercial hydroxyapatite (CHA) and bovine, derived hydroxyapatite (BHA) ceramics on the structure, corrosion, and biological response of Ti6Al4V anodic coatings were studied. The XRD results indicated that the coatings consist of TiO2, NaTi2 (PO4)(3) and HA, whereas specific product such as MgO was present in BHA-layer, and CaTiO3 in CHA film. The TiO2-CHA films showed porous circular pores while BHA-containing coatings revealed flake-droplet morphology. The contact angle and surface energy test revealed that the layers are significantly more hydrophilic and have higher surface energy than the bare Ti6Al4V. The SBF assessment showed that the films possessed higher apatite forming ability than Ti6Al4V, especially with BHA film. The in vitro test results agree strongly with the SBF soaking: the BHA coating demonstrated superior corrosion performance due to its ingredients. The results suggest that BHA could promote higher Ca2+/PO43- induction on the implant with great potential for biomedical applications.