Toward Reduction in False Positives Just-In-Time Software Defect Prediction Using Deep Reinforcement Learning
Deep Q-Network (DQN) is a popular deep reinforcement learning algorithm that has demonstrated promising results across a variety of domains. DQN presents a promising solution to the challenge of lowering false positives in software defect prediction, thereby enhancing the reliability of the predicti...
Saved in:
Main Authors: | Ismail, Ahmad Muhaimin, Ab Hamid, Siti Hafizah, Sani, Asmiza Abdul, Daud, Nur Nasuha Mohd |
---|---|
格式: | Article |
出版: |
Institute of Electrical and Electronics Engineers
2024
|
主題: | |
在線閱讀: | http://eprints.um.edu.my/45862/ https://doi.org/10.1109/ACCESS.2024.3382991 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
KCO: Balancing class distribution in just-in-time software defect prediction using kernel crossover oversampling
由: Ismail, Ahmad Muhaimin, et al.
出版: (2024) -
Deep Q-network for just-in-time software defect prediction / Ahmad Muhaimin Ismail
由: Ahmad Muhaimin , Ismail
出版: (2023) -
The reduction of false positive alarms with data mining classsifier
由: Alshaarani, Omar Abdo Omar,
出版: (2008) -
Parallel Network Alert Management System For IDS False Positive Reduction
由: el-Taj, Homam Reda Kamel
出版: (2011) -
Enhanced massive training artificial immune recognition system for false positives reduction in lung nodules classification
由: Pheng, H. S., et al.
出版: (2019)