Toward Reduction in False Positives Just-In-Time Software Defect Prediction Using Deep Reinforcement Learning
Deep Q-Network (DQN) is a popular deep reinforcement learning algorithm that has demonstrated promising results across a variety of domains. DQN presents a promising solution to the challenge of lowering false positives in software defect prediction, thereby enhancing the reliability of the predicti...
محفوظ في:
المؤلفون الرئيسيون: | Ismail, Ahmad Muhaimin, Ab Hamid, Siti Hafizah, Sani, Asmiza Abdul, Daud, Nur Nasuha Mohd |
---|---|
التنسيق: | مقال |
منشور في: |
Institute of Electrical and Electronics Engineers
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.um.edu.my/45862/ https://doi.org/10.1109/ACCESS.2024.3382991 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
KCO: Balancing class distribution in just-in-time software defect prediction using kernel crossover oversampling
بواسطة: Ismail, Ahmad Muhaimin, وآخرون
منشور في: (2024) -
Deep Q-network for just-in-time software defect prediction / Ahmad Muhaimin Ismail
بواسطة: Ahmad Muhaimin , Ismail
منشور في: (2023) -
The reduction of false positive alarms with data mining classsifier
بواسطة: Alshaarani, Omar Abdo Omar,
منشور في: (2008) -
Parallel Network Alert Management System For IDS False Positive Reduction
بواسطة: el-Taj, Homam Reda Kamel
منشور في: (2011) -
Enhanced massive training artificial immune recognition system for false positives reduction in lung nodules classification
بواسطة: Pheng, H. S., وآخرون
منشور في: (2019)