A novel evaluation indicator and optimal heating strategy for using an intermittent-operation catalytic combustion heater in open cold environments
Specific occupations and activities often require the ability to provide heating in cold open environments. This leads to a conflict between personnel comfort and portable energy usage. However, studies have not fully explored the characteristics of asymmetric intermittent radiation heating in cold...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2024
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/45625/ https://doi.org/10.1016/j.buildenv.2024.111271 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Specific occupations and activities often require the ability to provide heating in cold open environments. This leads to a conflict between personnel comfort and portable energy usage. However, studies have not fully explored the characteristics of asymmetric intermittent radiation heating in cold open environments. Therefore, a self-developed catalytic combustion radiant heater is used as an intermittent heat source for exploring its optimal intermittent heating strategy. The evaluation indicators, derived from measurements of the 20 participants in the experiment, include overall thermal evaluations, energy consumption, and corrective power (CP). In the study, the transient characterization the traditional CP (CPtrad) yielded results ranging from -0.76 to 1.76 K, with some negative values. Consequently, the concept of continuity and holistic perspective is broadened to accommodate intermittent heating. The newly expanded indicator, named CPinterm, varied from 0.29 to 2.52 K. Subsequently, a functional model linking CPtrad to CPinterm was obtained by polynomial fitting (R2 = 0.77) to simplify the experimental complexity. The model was also validated by data from previous studies on conduction and convection PCS. Following a comprehensive analysis, the optimal heating strategy for the heater was found to be a 40 cm heating distance, 5 min heating time, and 5 min intermittent time. This strategy reduced energy consumption by 50% and increased fuel usage hours by 2 times compared to continuous heating. This study's established indicator offers a viable evaluation method for personal comfort systems implementing intermittent operation strategies. |
---|