Integrated production of methanol and biochar from bagasse and plastic waste: A three-in-one solution for carbon sequestration, bioenergy production, and waste valorization

The shift from fossil fuels to renewable energy is a crucial strategy to achieve carbon neutrality. However, the methanol industry relies heavily on fossil fuels. Alternative feedstocks, such as biomass and plastics, still face many challenges. Biomass is hydrogen-deficient and cannot achieve a high...

Full description

Saved in:
Bibliographic Details
Main Authors: Su, Guangcan, Jiang, Peng, Zhou, Hewen, Zulkifli, Nurin Wahidah Mohd, Ong, Hwai Chyuan, Ibrahim, Shaliza
Format: Article
Published: Elsevier 2024
Subjects:
Online Access:http://eprints.um.edu.my/45277/
https://doi.org/10.1016/j.enconman.2024.118344
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The shift from fossil fuels to renewable energy is a crucial strategy to achieve carbon neutrality. However, the methanol industry relies heavily on fossil fuels. Alternative feedstocks, such as biomass and plastics, still face many challenges. Biomass is hydrogen-deficient and cannot achieve a high methanol yield, while plastic gasification consumes too much energy. Accordingly, this research proposed a new method to synergistically coproduce methanol and biochar from bagasse pyrolysis and plastic waste gasification. This innovative approach was assessed using techno-economic analysis and hybrid life-cycle assessment based on sugarcane bagasse resources in Guangxi province as a case study and compared with the other four scenarios. The results indicated that the novel method exhibits huger economic and environmental benefits with a low payback period of 6.32 years and a low global warming potential of -1875.41 kg CO2-eq/t. However, the high total capital cost is the primary potential obstacle to widespread promotion. Spatial-temporal analysis shows that Chongzuo and Laibin have the most tremendous methanol production potential and economic and environmental benefits due to their high bagasse production. This study contributes to biomass utilization and plastic waste management by proposing a synergistic process and offers multiple benefits for carbon sequestration, energy security, and waste valorization.