Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites

The addition of iron oxide nanoparticles (IONP) tends to agglomerate easily, and thus it is hard to obtain a uniform and well-dispersed particle nitrile rubber matrix (NBR). IONP was synthesized via the precipitation method, coated with fatty acid to produce coated IONP (C-IONP) before being compoun...

Full description

Saved in:
Bibliographic Details
Main Authors: Tiar, Ong Hun, Muhd Julkapli, Nurhidayatullaili
Format: Article
Published: Springer Verlag (Germany) 2024
Subjects:
Online Access:http://eprints.um.edu.my/45022/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.45022
record_format eprints
spelling my.um.eprints.450222024-03-26T04:52:16Z http://eprints.um.edu.my/45022/ Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites Tiar, Ong Hun Muhd Julkapli, Nurhidayatullaili Q Science (General) The addition of iron oxide nanoparticles (IONP) tends to agglomerate easily, and thus it is hard to obtain a uniform and well-dispersed particle nitrile rubber matrix (NBR). IONP was synthesized via the precipitation method, coated with fatty acid to produce coated IONP (C-IONP) before being compounded with NBR latex at 0 to 20 phr loading. The good interaction of C-IONP and NBR matrix was established by the formation of significant FTIR peaks at 1710 and 565 cm−1 presented as C=O and Fe–O bands, respectively. Mechanical performance analysis by universal testing machine demonstrated that the tensile stress of NBR 15 and 20 increased dramatically as compared to neat NBR attributed to filler–filler interaction in C-IONP. Meanwhile, the lower tensile strength increment rate of NBR 5 and 10 than neat NBR was due to the presence of C-IONP which increased the strain by more than 700, with well particle distribution. Graphical abstract: Figure not available: see fulltext. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. Springer Verlag (Germany) 2024 Article PeerReviewed Tiar, Ong Hun and Muhd Julkapli, Nurhidayatullaili (2024) Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites. Polymer Bulletin, 81 (1). 521 – 533. ISSN 0170-0839, DOI https://doi.org/10.1007/s00289-023-04728-2 <https://doi.org/10.1007/s00289-023-04728-2>. 10.1007/s00289-023-04728-2
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic Q Science (General)
spellingShingle Q Science (General)
Tiar, Ong Hun
Muhd Julkapli, Nurhidayatullaili
Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites
description The addition of iron oxide nanoparticles (IONP) tends to agglomerate easily, and thus it is hard to obtain a uniform and well-dispersed particle nitrile rubber matrix (NBR). IONP was synthesized via the precipitation method, coated with fatty acid to produce coated IONP (C-IONP) before being compounded with NBR latex at 0 to 20 phr loading. The good interaction of C-IONP and NBR matrix was established by the formation of significant FTIR peaks at 1710 and 565 cm−1 presented as C=O and Fe–O bands, respectively. Mechanical performance analysis by universal testing machine demonstrated that the tensile stress of NBR 15 and 20 increased dramatically as compared to neat NBR attributed to filler–filler interaction in C-IONP. Meanwhile, the lower tensile strength increment rate of NBR 5 and 10 than neat NBR was due to the presence of C-IONP which increased the strain by more than 700, with well particle distribution. Graphical abstract: Figure not available: see fulltext. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
format Article
author Tiar, Ong Hun
Muhd Julkapli, Nurhidayatullaili
author_facet Tiar, Ong Hun
Muhd Julkapli, Nurhidayatullaili
author_sort Tiar, Ong Hun
title Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites
title_short Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites
title_full Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites
title_fullStr Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites
title_full_unstemmed Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites
title_sort mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites
publisher Springer Verlag (Germany)
publishDate 2024
url http://eprints.um.edu.my/45022/
_version_ 1794633292550504448
score 13.160551