Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment

This study focuses on the production and purification of multi-walled carbon nanotubes (P-CNTs) via a catalytic chemical vapor deposition method and subsequent functionalization with amino polyethylene glycol (NH2-PEG) and its mixture with polyhydroxybutyrate (PHB) through a multi-step purification...

Full description

Saved in:
Bibliographic Details
Main Authors: Tijani, J.O., Abdulkareem, A.S., Mustapha, S., Ndamitso, M.M., Bada, S.O., Sagadevan, Suresh
Format: Article
Published: Elsevier 2024
Subjects:
Online Access:http://eprints.um.edu.my/44734/
https://doi.org/10.1016/j.seppur.2023.125736
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.44734
record_format eprints
spelling my.um.eprints.447342024-07-11T00:24:57Z http://eprints.um.edu.my/44734/ Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment Tijani, J.O. Abdulkareem, A.S. Mustapha, S. Ndamitso, M.M. Bada, S.O. Sagadevan, Suresh TD Environmental technology. Sanitary engineering TP Chemical technology This study focuses on the production and purification of multi-walled carbon nanotubes (P-CNTs) via a catalytic chemical vapor deposition method and subsequent functionalization with amino polyethylene glycol (NH2-PEG) and its mixture with polyhydroxybutyrate (PHB) through a multi-step purification process to produce NH2-PEG-CNTs and NH2-PEG-PHB-CNTs, respectively. The developed nanoadsorbents were used to treat electroplating wastewater via batch adsorption to sorb potentially toxic metals and emerging pollutants. The nanoadsorbents were characterized before and after treatment with wastewater after thermal regeneration analyzed using HRSEM/EDS/SAED, DLS Nanozetasizer, BET, TGA/DTG, and FTIR. The nanoadsorbents showed a homogeneous distribution of clean and smooth crystalline interwoven tubular/cylindrical shapes and sizes, with broad polydispersed/high aspect ratio, large surface area, mesopores, and functional groups. The batch adsorption study showed simultaneous multi-capturing of toxic metals from industrial electroplating wastewater with a directly proportional relationship between contact time, adsorbent dosage andtemperature, and electrostatic activities via the positive surface charge of the nanoadsorbents (pH > pHzpc). The highest removal of Fe (15.86 ), Ni (79.82 ), Pb (79.82 ), and Cu (84.97 ) were obtained using NH2-PEG-PHB-CNTs. In addition, the ANOVA results show that the adsorption process depends on other parameters such as the concentration of toxic metals in the wastewater, its hydration energy, electronegativity, ionic mobility in the electrostatic activities, pH of the nanoadsorbents, water holding capacity of the polymer-functionalized nanoadsorbents, and synergistic effects of the bi-polymer. Moreover, the nanoadsorbents have a stable morphology after thermal regeneration for reusability purposes, and treated wastewater can be safely reused in the electroplating industry or for other purposes, such as agriculture. © 2023 Elsevier B.V. Elsevier 2024-03-20 Article PeerReviewed Tijani, J.O. and Abdulkareem, A.S. and Mustapha, S. and Ndamitso, M.M. and Bada, S.O. and Sagadevan, Suresh (2024) Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment. Separation and Purification Technology, 332. ISSN 1383-5866, DOI https://doi.org/10.1016/j.seppur.2023.125736 <https://doi.org/10.1016/j.seppur.2023.125736>. https://doi.org/10.1016/j.seppur.2023.125736 10.1016/j.seppur.2023.125736
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic TD Environmental technology. Sanitary engineering
TP Chemical technology
spellingShingle TD Environmental technology. Sanitary engineering
TP Chemical technology
Tijani, J.O.
Abdulkareem, A.S.
Mustapha, S.
Ndamitso, M.M.
Bada, S.O.
Sagadevan, Suresh
Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment
description This study focuses on the production and purification of multi-walled carbon nanotubes (P-CNTs) via a catalytic chemical vapor deposition method and subsequent functionalization with amino polyethylene glycol (NH2-PEG) and its mixture with polyhydroxybutyrate (PHB) through a multi-step purification process to produce NH2-PEG-CNTs and NH2-PEG-PHB-CNTs, respectively. The developed nanoadsorbents were used to treat electroplating wastewater via batch adsorption to sorb potentially toxic metals and emerging pollutants. The nanoadsorbents were characterized before and after treatment with wastewater after thermal regeneration analyzed using HRSEM/EDS/SAED, DLS Nanozetasizer, BET, TGA/DTG, and FTIR. The nanoadsorbents showed a homogeneous distribution of clean and smooth crystalline interwoven tubular/cylindrical shapes and sizes, with broad polydispersed/high aspect ratio, large surface area, mesopores, and functional groups. The batch adsorption study showed simultaneous multi-capturing of toxic metals from industrial electroplating wastewater with a directly proportional relationship between contact time, adsorbent dosage andtemperature, and electrostatic activities via the positive surface charge of the nanoadsorbents (pH > pHzpc). The highest removal of Fe (15.86 ), Ni (79.82 ), Pb (79.82 ), and Cu (84.97 ) were obtained using NH2-PEG-PHB-CNTs. In addition, the ANOVA results show that the adsorption process depends on other parameters such as the concentration of toxic metals in the wastewater, its hydration energy, electronegativity, ionic mobility in the electrostatic activities, pH of the nanoadsorbents, water holding capacity of the polymer-functionalized nanoadsorbents, and synergistic effects of the bi-polymer. Moreover, the nanoadsorbents have a stable morphology after thermal regeneration for reusability purposes, and treated wastewater can be safely reused in the electroplating industry or for other purposes, such as agriculture. © 2023 Elsevier B.V.
format Article
author Tijani, J.O.
Abdulkareem, A.S.
Mustapha, S.
Ndamitso, M.M.
Bada, S.O.
Sagadevan, Suresh
author_facet Tijani, J.O.
Abdulkareem, A.S.
Mustapha, S.
Ndamitso, M.M.
Bada, S.O.
Sagadevan, Suresh
author_sort Tijani, J.O.
title Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment
title_short Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment
title_full Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment
title_fullStr Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment
title_full_unstemmed Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment
title_sort polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment
publisher Elsevier
publishDate 2024
url http://eprints.um.edu.my/44734/
https://doi.org/10.1016/j.seppur.2023.125736
_version_ 1805881163357618176
score 13.211869