A new deep wavefront based model for text localization in 3D video
With the evolution of electronic devices, such as 3D cameras, addressing the challenges of text localization in 3D video (e.g., for indexing) is increasingly drawing the attention of the multimedia and video processing community. Existing methods focus on 2D video and their performance in the presen...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/42144/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.42144 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.421442023-10-16T04:02:05Z http://eprints.um.edu.my/42144/ A new deep wavefront based model for text localization in 3D video Nandanwar, Lokesh Shivakumara, Palaiahnakote Ramachandra, Raghavendra Lu, Tong Pal, Umapada Antonacopoulos, Apostolos Lu, Yue QA75 Electronic computers. Computer science With the evolution of electronic devices, such as 3D cameras, addressing the challenges of text localization in 3D video (e.g., for indexing) is increasingly drawing the attention of the multimedia and video processing community. Existing methods focus on 2D video and their performance in the presence of the challenges in 3D video, such as shadow areas associated with text and irregularly sized and shaped text, degrades. This paper proposes the first approach that successfully addresses the challenges of 3D video in addition to those of 2D. It employs a number of innovations, among which, the first is the Generalized Gradient Vector Flow (GGVF) for dominant points detection. The second is the Wavefront concept for text candidate point detection from those dominant points. In addition, an Adaptive B-Spline Polygon Curve Network (ABS-Net) is proposed for accurate text localization in 3D videos by constructing tight fitting bounding polygons using text candidate points. Extensive experiments on custom (3D video) and standard datasets (2D video and scene text) show that the proposed method is practical and useful, and overall outperforms existing state-of-the-art methods. Institute of Electrical and Electronics Engineers 2022-06 Article PeerReviewed Nandanwar, Lokesh and Shivakumara, Palaiahnakote and Ramachandra, Raghavendra and Lu, Tong and Pal, Umapada and Antonacopoulos, Apostolos and Lu, Yue (2022) A new deep wavefront based model for text localization in 3D video. IEEE Transactions on Circuits and Systems for Video Technology, 32 (6). pp. 3375-3389. ISSN 1051-8215, DOI https://doi.org/10.1109/TCSVT.2021.3110990 <https://doi.org/10.1109/TCSVT.2021.3110990>. 10.1109/TCSVT.2021.3110990 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Nandanwar, Lokesh Shivakumara, Palaiahnakote Ramachandra, Raghavendra Lu, Tong Pal, Umapada Antonacopoulos, Apostolos Lu, Yue A new deep wavefront based model for text localization in 3D video |
description |
With the evolution of electronic devices, such as 3D cameras, addressing the challenges of text localization in 3D video (e.g., for indexing) is increasingly drawing the attention of the multimedia and video processing community. Existing methods focus on 2D video and their performance in the presence of the challenges in 3D video, such as shadow areas associated with text and irregularly sized and shaped text, degrades. This paper proposes the first approach that successfully addresses the challenges of 3D video in addition to those of 2D. It employs a number of innovations, among which, the first is the Generalized Gradient Vector Flow (GGVF) for dominant points detection. The second is the Wavefront concept for text candidate point detection from those dominant points. In addition, an Adaptive B-Spline Polygon Curve Network (ABS-Net) is proposed for accurate text localization in 3D videos by constructing tight fitting bounding polygons using text candidate points. Extensive experiments on custom (3D video) and standard datasets (2D video and scene text) show that the proposed method is practical and useful, and overall outperforms existing state-of-the-art methods. |
format |
Article |
author |
Nandanwar, Lokesh Shivakumara, Palaiahnakote Ramachandra, Raghavendra Lu, Tong Pal, Umapada Antonacopoulos, Apostolos Lu, Yue |
author_facet |
Nandanwar, Lokesh Shivakumara, Palaiahnakote Ramachandra, Raghavendra Lu, Tong Pal, Umapada Antonacopoulos, Apostolos Lu, Yue |
author_sort |
Nandanwar, Lokesh |
title |
A new deep wavefront based model for text localization in 3D video |
title_short |
A new deep wavefront based model for text localization in 3D video |
title_full |
A new deep wavefront based model for text localization in 3D video |
title_fullStr |
A new deep wavefront based model for text localization in 3D video |
title_full_unstemmed |
A new deep wavefront based model for text localization in 3D video |
title_sort |
new deep wavefront based model for text localization in 3d video |
publisher |
Institute of Electrical and Electronics Engineers |
publishDate |
2022 |
url |
http://eprints.um.edu.my/42144/ |
_version_ |
1781704601172443136 |
score |
13.211869 |