Nanoantioxidants: The fourth generation of antioxidants-recent research roadmap and future perspectives
Antioxidants work by interacting with free radicals and converting them into harmless chemicals, interfering with the progression of potentially hazardous chain reactions. Antioxidants are useful in treating illnesses induced by free radicals because they help minimize oxidative stress. Antioxidants...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/40866/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antioxidants work by interacting with free radicals and converting them into harmless chemicals, interfering with the progression of potentially hazardous chain reactions. Antioxidants are useful in treating illnesses induced by free radicals because they help minimize oxidative stress. Antioxidants, whether natural or synthetic, have a limited effect on cellular health and function because of their low absorption, inability to traverse cellular membrane, and disintegration during delivery. The benefits of antioxidants, both natural and synthetic, are comparable. The use of antioxidants that are covalently attached to nanoparticles, or encased in particles with a hollow center, or feature the nanomaterial encapsulation of various origins has been employed to solve these challenges to provide improved stability, slow and slow sustained release, biocompatibility, and targeted administration. This review examines the importance of metal-based antioxidants and methods for enhancing antioxidant activities based on recent studies. |
---|