Sustainable green roofs: A comprehensive review of influential factors

Green roofs have gained much attention as a modern roofing surface due to their potential to deliver many environmental and social benefits. Studies have indicated that different GR designs deliver different ecosystem services, and there are important factors that affect GR performance. This article...

Full description

Saved in:
Bibliographic Details
Main Authors: Shahmohammad, Mohsen, Hosseinzadeh, Majid, Dvorak, Bruce, Bordbar, Farzaneh, Shahmohammadmirab, Hamid, Aghamohammadi, Nasrin
Format: Article
Published: Springer 2022
Subjects:
Online Access:http://eprints.um.edu.my/40830/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Green roofs have gained much attention as a modern roofing surface due to their potential to deliver many environmental and social benefits. Studies have indicated that different GR designs deliver different ecosystem services, and there are important factors that affect GR performance. This article reviewed significant factors that influence GR performance and sustainability. Substrate and drainage layer material choice significantly affects stormwater retention potential, leachate quality, plant survival, and determines GR environmental footprints. Subsequently, type of plants, their form, and kinds used on GRs impact GR ecosystem function. Leaf area is the most studied trait due to its influence on the cooling potential and energy performance. In order to achieve a sustainable GR, it is essential to select the type of plants that have a high survival rate. Perennial herbs, particularly forbs and grass as dominant groups, are heat and drought tolerant, which make them suitable in GR experiment. Furthermore, selecting a suitable irrigation system is as important as two other factors for having a sustainable GR. Irrigation is essential for plant survival, and due to the current pressure on valuable water sources, it is important to select a sustainable irrigation system. This review presents three sustainable irrigation methods: (i) employing alternative water sources such as rainwater, greywater, and atmospheric water; (ii) smart irrigation and monitoring; and (iii) using adaptive materials and additives that improve GR water use. This review sheds new insights on the design of high-performance, sustainable GRs and provides guidance for the legislation of sustainable GR.