Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure?

Thermal phase transitions of 1H,4H-piperazine-N,N `-diium diacetate were investigated by the differential scanning calorimetry (DSC) compared with piperazine and glacial acetic acid. The thermal stability of new sublimable molten salt was determined by thermogravimetric analysis (TGA), and the relea...

Full description

Saved in:
Bibliographic Details
Main Authors: Zaharani, Lia, Johan, Mohd Rafie, Khaligh, Nader Ghaffari
Format: Article
Published: Springer 2022
Subjects:
Online Access:http://eprints.um.edu.my/40372/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.40372
record_format eprints
spelling my.um.eprints.403722023-11-22T08:01:19Z http://eprints.um.edu.my/40372/ Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure? Zaharani, Lia Johan, Mohd Rafie Khaligh, Nader Ghaffari QD Chemistry Thermal phase transitions of 1H,4H-piperazine-N,N `-diium diacetate were investigated by the differential scanning calorimetry (DSC) compared with piperazine and glacial acetic acid. The thermal stability of new sublimable molten salt was determined by thermogravimetric analysis (TGA), and the released gases after decomposition were identified by the thermogravimetric analysis-mass spectrometry (TG-MS). DSC profile of new sublimable organic molten salt was utterly different from those of its reactants, viz. piperazine and glacial acetic acid. Although the probability of reforming the acid and base remains negligible even at high temperatures ( similar to 300 degrees C) for some protic ionic liquids, the thermal behavior results exhibited that this molten salt could sublime at around 145 degrees C in the absence of high or ultrahigh vacuum. A new insight is described for sublimation and recondensation of the molten salt, including transforming the ionic salt in the solid phase into the molecular gas-phase cluster in the vapor phase, and reverse transformation during heating and cooling, respectively. The molten salt is nonhygroscopic contrary to piperazine and glacial acetic acid, which are highly hygroscopic. Furthermore, this work revealed for the first time that certain organic salts containing acceptor-donor hydrogen bonding moieties could be directly sublimed without liquefaction. Springer 2022-12 Article PeerReviewed Zaharani, Lia and Johan, Mohd Rafie and Khaligh, Nader Ghaffari (2022) Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure? Journal of Thermal Analysis and Calorimetry, 147 (24). pp. 14183-14193. ISSN 1388-6150, DOI https://doi.org/10.1007/s10973-022-11717-6 <https://doi.org/10.1007/s10973-022-11717-6>. 10.1007/s10973-022-11717-6
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic QD Chemistry
spellingShingle QD Chemistry
Zaharani, Lia
Johan, Mohd Rafie
Khaligh, Nader Ghaffari
Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure?
description Thermal phase transitions of 1H,4H-piperazine-N,N `-diium diacetate were investigated by the differential scanning calorimetry (DSC) compared with piperazine and glacial acetic acid. The thermal stability of new sublimable molten salt was determined by thermogravimetric analysis (TGA), and the released gases after decomposition were identified by the thermogravimetric analysis-mass spectrometry (TG-MS). DSC profile of new sublimable organic molten salt was utterly different from those of its reactants, viz. piperazine and glacial acetic acid. Although the probability of reforming the acid and base remains negligible even at high temperatures ( similar to 300 degrees C) for some protic ionic liquids, the thermal behavior results exhibited that this molten salt could sublime at around 145 degrees C in the absence of high or ultrahigh vacuum. A new insight is described for sublimation and recondensation of the molten salt, including transforming the ionic salt in the solid phase into the molecular gas-phase cluster in the vapor phase, and reverse transformation during heating and cooling, respectively. The molten salt is nonhygroscopic contrary to piperazine and glacial acetic acid, which are highly hygroscopic. Furthermore, this work revealed for the first time that certain organic salts containing acceptor-donor hydrogen bonding moieties could be directly sublimed without liquefaction.
format Article
author Zaharani, Lia
Johan, Mohd Rafie
Khaligh, Nader Ghaffari
author_facet Zaharani, Lia
Johan, Mohd Rafie
Khaligh, Nader Ghaffari
author_sort Zaharani, Lia
title Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure?
title_short Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure?
title_full Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure?
title_fullStr Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure?
title_full_unstemmed Study of thermal behavior of 1H,4H-piperazine-N,N `-diium diacetate and its sublimation mechanism: An nonhygroscopic piperazine salt with ionic or cocrystal structure?
title_sort study of thermal behavior of 1h,4h-piperazine-n,n `-diium diacetate and its sublimation mechanism: an nonhygroscopic piperazine salt with ionic or cocrystal structure?
publisher Springer
publishDate 2022
url http://eprints.um.edu.my/40372/
_version_ 1783876704980172800
score 13.160551