Commuting maps on rank k triangular matrices

Let n >= 2 be an integer and let F be a field with vertical bar F vertical bar >= 3. Let T-n(F) be the ring of n x n upper triangular matrices over F with centre Z. Fixing an integer 2 <= k <= n,we prove thatan additive map psi: T-n (F) -> T-n(F) satisfies A psi (A) = psi(A)A for all...

Full description

Saved in:
Bibliographic Details
Main Authors: Chooi, Wai Leong, Kwa, Kiam Heong, Tan, Li Yin
Format: Article
Published: Taylor & Francis Ltd 2020
Subjects:
Online Access:http://eprints.um.edu.my/36699/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.36699
record_format eprints
spelling my.um.eprints.366992024-11-04T07:56:16Z http://eprints.um.edu.my/36699/ Commuting maps on rank k triangular matrices Chooi, Wai Leong Kwa, Kiam Heong Tan, Li Yin QA Mathematics Let n >= 2 be an integer and let F be a field with vertical bar F vertical bar >= 3. Let T-n(F) be the ring of n x n upper triangular matrices over F with centre Z. Fixing an integer 2 <= k <= n,we prove thatan additive map psi: T-n (F) -> T-n(F) satisfies A psi (A) = psi(A)A for all rank k matrices A is an element of T-n(F) if and only if there exist an additive map mu: T-n(F) -> Z, Z is an element of Z and alpha is an element of F in which alpha = 0 when vertical bar F vertical bar > 3 or k < n such that psi(A) = ZA + mu(A) alpha(a(11) + a(nn))E-1n for all A = (a(ij)) is an element of T-n(F). Here, E-1n is an element of T-n(F) is the matrix whose (1, n)th entry is one and zeros elsewhere. Taylor & Francis Ltd 2020-05 Article PeerReviewed Chooi, Wai Leong and Kwa, Kiam Heong and Tan, Li Yin (2020) Commuting maps on rank k triangular matrices. Linear & Multilinear Algebra, 68 (5). pp. 1021-1030. ISSN 03081087, DOI https://doi.org/10.1080/03081087.2018.1527281 <https://doi.org/10.1080/03081087.2018.1527281>. 10.1080/03081087.2018.1527281
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic QA Mathematics
spellingShingle QA Mathematics
Chooi, Wai Leong
Kwa, Kiam Heong
Tan, Li Yin
Commuting maps on rank k triangular matrices
description Let n >= 2 be an integer and let F be a field with vertical bar F vertical bar >= 3. Let T-n(F) be the ring of n x n upper triangular matrices over F with centre Z. Fixing an integer 2 <= k <= n,we prove thatan additive map psi: T-n (F) -> T-n(F) satisfies A psi (A) = psi(A)A for all rank k matrices A is an element of T-n(F) if and only if there exist an additive map mu: T-n(F) -> Z, Z is an element of Z and alpha is an element of F in which alpha = 0 when vertical bar F vertical bar > 3 or k < n such that psi(A) = ZA + mu(A) alpha(a(11) + a(nn))E-1n for all A = (a(ij)) is an element of T-n(F). Here, E-1n is an element of T-n(F) is the matrix whose (1, n)th entry is one and zeros elsewhere.
format Article
author Chooi, Wai Leong
Kwa, Kiam Heong
Tan, Li Yin
author_facet Chooi, Wai Leong
Kwa, Kiam Heong
Tan, Li Yin
author_sort Chooi, Wai Leong
title Commuting maps on rank k triangular matrices
title_short Commuting maps on rank k triangular matrices
title_full Commuting maps on rank k triangular matrices
title_fullStr Commuting maps on rank k triangular matrices
title_full_unstemmed Commuting maps on rank k triangular matrices
title_sort commuting maps on rank k triangular matrices
publisher Taylor & Francis Ltd
publishDate 2020
url http://eprints.um.edu.my/36699/
_version_ 1814933260693667840
score 13.211869