Hospital readmission prediction based on improved feature selection using grey relational analysis and LASSO
This paper develops a robust hospital readmission prediction framework by combining the feature selection algorithm and machine learning (ML) classifiers. The improved feature selection is proposed by considering the uncertainty in patient's attributes that leads to the output variable. Design/...
保存先:
主要な著者: | Miswan, Nor Hamizah, Chan, Chee Seng, Ng, Chong Guan |
---|---|
フォーマット: | 論文 |
出版事項: |
Emerald Group Publishing
2021
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/35367/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A predictive analytics framework using grey-lasso model for hospital readmission / Nor Hamizah Miswan
著者:: Nor Hamizah , Miswan
出版事項: (2022) -
Predictive modelling of hospital readmission: Evaluation of different preprocessing techniques on machine learning classifiers
著者:: Miswan, Nor Hamizah, 等
出版事項: (2021) -
Association rules mining for hospital readmission: A case study
著者:: Miswan, Nor Hamizah, 等
出版事項: (2021) -
An enhanced feature selection and cancer classification for microarray data using relaxed Lasso and support vector machine
著者:: Aina Umairah, Mazlan, 等
出版事項: (2021) -
Grey relational analysis feature selection for cancer classification using support vector machine
著者:: Sy. Ahmad Ubaidillah, Sharifah Hafizah
出版事項: (2014)