Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor

Development of a facile, fast, sensitive and multiplex DNA detection for the quantitative verification of food adulterant is of high significance these days. RT-PCR, and nanoparticle based fluorescence and electrochemical detection techniques have been successfully used in clinical medicine. However...

Full description

Saved in:
Bibliographic Details
Main Authors: Khalil, Ibrahim, Yehye, Wageeh Abdulhadi, Julkapli, Nurhidayatullaili Muhd, Ibn Sina, Abu Ali, Chowdhury, Faisal Islam, Khandaker, Mayeen Uddin, Hsiao, Vincent K. S., Basirun, Wan Jefrey
Format: Article
Published: Elsevier 2021
Subjects:
Online Access:http://eprints.um.edu.my/34099/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.34099
record_format eprints
spelling my.um.eprints.340992022-07-18T06:37:31Z http://eprints.um.edu.my/34099/ Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor Khalil, Ibrahim Yehye, Wageeh Abdulhadi Julkapli, Nurhidayatullaili Muhd Ibn Sina, Abu Ali Chowdhury, Faisal Islam Khandaker, Mayeen Uddin Hsiao, Vincent K. S. Basirun, Wan Jefrey QC Physics QD Chemistry T Technology (General) Development of a facile, fast, sensitive and multiplex DNA detection for the quantitative verification of food adulterant is of high significance these days. RT-PCR, and nanoparticle based fluorescence and electrochemical detection techniques have been successfully used in clinical medicine. However, requirements of preconditioning steps and fluorescence dye labeling in RT-PCR, inherent photobleaching and overlapping spectra of fluorescent probe in fluorescent assay, are the few drawbacks that urge to find a suitable alternative. Surface-enhanced Raman scattering (SERS) provides molecule specific fingerprint spectra, could be a strategic to resolve the limitations. Here, we report a SERS based duplex DNA detection strategy for simultaneous and quantitative detection of a meat adulterant (pork) and an endangered species - Malayan Box Turtle (MBT). In the biosensing strategy, SERS active dual platforms - graphene oxide-gold nanoparticles (GO-AuNPs) and AuNPs, and uniquely designed Raman tag intercalated short-length signal probe (SP) sequences are used. The sensing principle relies on the covalent linking of SP sequences functionalized AuNPs and capture probe (CP) functionalized GO-AuNPs via hybridization with corresponding target DNA. Coupling of multi-component platforms contributes in huge SERS signal enhancement due to electromagnetic and charge transfer mechanism. The biosensor showed an improved sensitivity in simultaneous detection of both adulterants with limit of detection (LOD) is 1 x 10(-14) M. Moreover, efficiency of SERS biosensor was validated by the DNA extracted from real samples with a LOD of 1 x 10(-13) M. Furthermore, the biosensing approach showed excellent sequence specificity in discriminating DNA sequences of five non-target species and specificity towards single nucleotide differentiation. Elsevier 2021-09 Article PeerReviewed Khalil, Ibrahim and Yehye, Wageeh Abdulhadi and Julkapli, Nurhidayatullaili Muhd and Ibn Sina, Abu Ali and Chowdhury, Faisal Islam and Khandaker, Mayeen Uddin and Hsiao, Vincent K. S. and Basirun, Wan Jefrey (2021) Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor. Vibrational Spectroscopy, 116. ISSN 0924-2031, DOI https://doi.org/10.1016/j.vibspec.2021.103293 <https://doi.org/10.1016/j.vibspec.2021.103293>. 10.1016/j.vibspec.2021.103293
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic QC Physics
QD Chemistry
T Technology (General)
spellingShingle QC Physics
QD Chemistry
T Technology (General)
Khalil, Ibrahim
Yehye, Wageeh Abdulhadi
Julkapli, Nurhidayatullaili Muhd
Ibn Sina, Abu Ali
Chowdhury, Faisal Islam
Khandaker, Mayeen Uddin
Hsiao, Vincent K. S.
Basirun, Wan Jefrey
Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor
description Development of a facile, fast, sensitive and multiplex DNA detection for the quantitative verification of food adulterant is of high significance these days. RT-PCR, and nanoparticle based fluorescence and electrochemical detection techniques have been successfully used in clinical medicine. However, requirements of preconditioning steps and fluorescence dye labeling in RT-PCR, inherent photobleaching and overlapping spectra of fluorescent probe in fluorescent assay, are the few drawbacks that urge to find a suitable alternative. Surface-enhanced Raman scattering (SERS) provides molecule specific fingerprint spectra, could be a strategic to resolve the limitations. Here, we report a SERS based duplex DNA detection strategy for simultaneous and quantitative detection of a meat adulterant (pork) and an endangered species - Malayan Box Turtle (MBT). In the biosensing strategy, SERS active dual platforms - graphene oxide-gold nanoparticles (GO-AuNPs) and AuNPs, and uniquely designed Raman tag intercalated short-length signal probe (SP) sequences are used. The sensing principle relies on the covalent linking of SP sequences functionalized AuNPs and capture probe (CP) functionalized GO-AuNPs via hybridization with corresponding target DNA. Coupling of multi-component platforms contributes in huge SERS signal enhancement due to electromagnetic and charge transfer mechanism. The biosensor showed an improved sensitivity in simultaneous detection of both adulterants with limit of detection (LOD) is 1 x 10(-14) M. Moreover, efficiency of SERS biosensor was validated by the DNA extracted from real samples with a LOD of 1 x 10(-13) M. Furthermore, the biosensing approach showed excellent sequence specificity in discriminating DNA sequences of five non-target species and specificity towards single nucleotide differentiation.
format Article
author Khalil, Ibrahim
Yehye, Wageeh Abdulhadi
Julkapli, Nurhidayatullaili Muhd
Ibn Sina, Abu Ali
Chowdhury, Faisal Islam
Khandaker, Mayeen Uddin
Hsiao, Vincent K. S.
Basirun, Wan Jefrey
author_facet Khalil, Ibrahim
Yehye, Wageeh Abdulhadi
Julkapli, Nurhidayatullaili Muhd
Ibn Sina, Abu Ali
Chowdhury, Faisal Islam
Khandaker, Mayeen Uddin
Hsiao, Vincent K. S.
Basirun, Wan Jefrey
author_sort Khalil, Ibrahim
title Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor
title_short Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor
title_full Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor
title_fullStr Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor
title_full_unstemmed Simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced Raman scattering duplex DNA biosensor
title_sort simultaneous detection of dual food adulterants using graphene oxide and gold nanoparticle based surface enhanced raman scattering duplex dna biosensor
publisher Elsevier
publishDate 2021
url http://eprints.um.edu.my/34099/
_version_ 1739828488089632768
score 13.160551