Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects

One of the pioneering materials nowadays is graphene quantum dot (GQD), which possesses outstanding electrical, thermal, and mechanical properties followed by less toxicity and robust photoluminescence. These commendable properties allow GQD to be suitable enough to apply in dye-sensitized solar cel...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahalingam, Savisha, Manap, Abreeza, Omar, Azimah, Low, Foo Wah, Afandi, N. F., Chia, Chin Hua, Abd Rahim, Nasrudin
Format: Article
Published: Pergamon-Elsevier Science Ltd 2021
Subjects:
Online Access:http://eprints.um.edu.my/28713/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the pioneering materials nowadays is graphene quantum dot (GQD), which possesses outstanding electrical, thermal, and mechanical properties followed by less toxicity and robust photoluminescence. These commendable properties allow GQD to be suitable enough to apply in dye-sensitized solar cells, incapacitating current material limits. Nevertheless, pure GQDs have many challenges in reaching their full potential in DSSC. Chemical modification and functionalization tune the physical and chemical properties, driving GQD towards high-performance DSSC. This is an ideal way of modifying GQD because the chemical adsorption of atoms or molecules prevents the destruction of the carbon network without substitutional impurities. Here, we deliver a short outline of progress in understanding GQD functionalization from theoretical/computational perspectives. This chemically modified GQD is then linked with the performance of DSSC. The review also summarizes the electron transport in GQD-DSSC to minimize back-electron transmission recombination at the photoelectrode/ electrolyte edge. The impact, outlook, and future prospects of the GQD-DSSC are included as a conclusion in this review.