Vegetation changes in response to climatic factors and human activities in Jilin Province, China, 2000-2019

Dynamic change in vegetation is an integral component of terrestrial ecosystems, which has become a significant research area in the current context of global climate warming. Jilin Province in northeast China is an ecologically fragile area, and there is an urgent need to understand its vegetation...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Ying, Zhao, Zhibo, Wang, Lingzhi, Li, Guanghui, Chang, Lei, Li, Yuefen
Format: Article
Published: MDPI 2021
Subjects:
Online Access:http://eprints.um.edu.my/28492/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamic change in vegetation is an integral component of terrestrial ecosystems, which has become a significant research area in the current context of global climate warming. Jilin Province in northeast China is an ecologically fragile area, and there is an urgent need to understand its vegetation changes and responses to both climatic factors and human activities. The normalized difference vegetation index (NDVI) was used to analyze trends in vegetation growth, and indicated significant growth overall. The NDVI of different vegetation cover types is increasing, indicating that the vegetation is continuously greening, and in descending order, the growth trends were grassland (0.0035/year) > permanent wetland (0.0028/year) > cropland (0.0027/year) > forest land (0.0022/year) > barren land (-0.0001/year). Grassland and cropland vegetation types included the most severely degraded areas, with fluctuating NDVI values. Precipitation was the main positive controlling climatic factor of NDVI in the western regions of the study area, while average temperature was the main factor in the eastern regions. Precipitation was the main climatic control factor for grassland and cropland, while forest land was limited by precipitation and average temperature. Barren land and permanent wetland were slightly negatively correlated with precipitation. From 2000 to 2019, the residual values for NDVI increased from -0.0121 to 0.0116, and the impact of human activities on vegetation changed from negative to positive. By 2019, the proportion of positively affected zones was as high as 94.01%, and the negatively affected zones were mainly distributed across transitional areas of cropland and grassland, and urban and built-up land and forest land.