An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology

The main purposes of this project are to assess and to optimize the solubility of carbon dioxide (CO2) in an aqueous 30 wt% monoethanolamine-tetrabutylphosphonium methanesulfonate (MEA-TBP]MeSO3]) new hybrid solvent. In this study, the viscosity and density of aqueous MEA-TBP]MeSO3] hybrid solvents...

Full description

Saved in:
Bibliographic Details
Main Authors: Anuar, Mus'ab Umair Zainul, Taha, Mohd Faisal, Yunus, Noor Mona Md, Ghani, Siti Musliha Mat, Idris, Azila
Format: Article
Published: MDPI 2021
Subjects:
Online Access:http://eprints.um.edu.my/26821/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.26821
record_format eprints
spelling my.um.eprints.268212022-02-24T03:01:48Z http://eprints.um.edu.my/26821/ An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology Anuar, Mus'ab Umair Zainul Taha, Mohd Faisal Yunus, Noor Mona Md Ghani, Siti Musliha Mat Idris, Azila TA Engineering (General). Civil engineering (General) The main purposes of this project are to assess and to optimize the solubility of carbon dioxide (CO2) in an aqueous 30 wt% monoethanolamine-tetrabutylphosphonium methanesulfonate (MEA-TBP]MeSO3]) new hybrid solvent. In this study, the viscosity and density of aqueous MEA-TBP]MeSO3] hybrid solvents containing different amounts of TBP]MeSO4] were determined. Meanwhile, Fourier Transform-Infrared (FT-IR) Spectroscopy was used to determine the presence of carbamate in aqueous MEA-TBP]MeSO3] to prove that CO2 was absorbed by aqueous MEA-TBP]MeSO3]. Response Surface Methodology (RSM) based on central composite design (CCD) was used to design the experiments and explore the effects of three independent parameters on the solubility of CO2 in aqueous MEA-TBP]MeSO3]. The three independent parameters are concentration of TBP]MeSO3] (2-20 wt.%), temperature (30-60 degrees C) and pressure of CO2 (2-30 bar). The experimental data was found to fit a quadratic equation using multiple regressions and analyzed using analysis of variance (ANOVA). The final empirical equation in terms of actual factors was deducted as mol fraction = 0.5316 - (2.76 x 10(-4))A - (8.8 x 10(-4))B + (8.48 x 10(-3))C + (2.9 x 10(-5))AB + (2.976 x 10(-6))AC + (5.5 x 10(-5))BC - (8.4 x 10(-5))A(2) - (3.3 x 10(-5))B-2 - (1.19 x 10(-4))C-2, whereby A = ionic liquid (TBP]MeSO3]) concentration, B = temperature and C = CO2 pressure. An attempt was made to perform the experiments for solubility of CO2 in aqueous MEA-TBP]MeSO3] to validate the removal of CO2 predicted by RSM. Based on a validation study, the experimental data showed a percentage error between 0.6% and 2.11% as compared to the predicted value of CO2 removal by RSM. MDPI 2021-07 Article PeerReviewed Anuar, Mus'ab Umair Zainul and Taha, Mohd Faisal and Yunus, Noor Mona Md and Ghani, Siti Musliha Mat and Idris, Azila (2021) An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology. Processes, 9 (7). ISSN 2227-9717, DOI https://doi.org/10.3390/pr9071186 <https://doi.org/10.3390/pr9071186>. 10.3390/pr9071186
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic TA Engineering (General). Civil engineering (General)
spellingShingle TA Engineering (General). Civil engineering (General)
Anuar, Mus'ab Umair Zainul
Taha, Mohd Faisal
Yunus, Noor Mona Md
Ghani, Siti Musliha Mat
Idris, Azila
An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology
description The main purposes of this project are to assess and to optimize the solubility of carbon dioxide (CO2) in an aqueous 30 wt% monoethanolamine-tetrabutylphosphonium methanesulfonate (MEA-TBP]MeSO3]) new hybrid solvent. In this study, the viscosity and density of aqueous MEA-TBP]MeSO3] hybrid solvents containing different amounts of TBP]MeSO4] were determined. Meanwhile, Fourier Transform-Infrared (FT-IR) Spectroscopy was used to determine the presence of carbamate in aqueous MEA-TBP]MeSO3] to prove that CO2 was absorbed by aqueous MEA-TBP]MeSO3]. Response Surface Methodology (RSM) based on central composite design (CCD) was used to design the experiments and explore the effects of three independent parameters on the solubility of CO2 in aqueous MEA-TBP]MeSO3]. The three independent parameters are concentration of TBP]MeSO3] (2-20 wt.%), temperature (30-60 degrees C) and pressure of CO2 (2-30 bar). The experimental data was found to fit a quadratic equation using multiple regressions and analyzed using analysis of variance (ANOVA). The final empirical equation in terms of actual factors was deducted as mol fraction = 0.5316 - (2.76 x 10(-4))A - (8.8 x 10(-4))B + (8.48 x 10(-3))C + (2.9 x 10(-5))AB + (2.976 x 10(-6))AC + (5.5 x 10(-5))BC - (8.4 x 10(-5))A(2) - (3.3 x 10(-5))B-2 - (1.19 x 10(-4))C-2, whereby A = ionic liquid (TBP]MeSO3]) concentration, B = temperature and C = CO2 pressure. An attempt was made to perform the experiments for solubility of CO2 in aqueous MEA-TBP]MeSO3] to validate the removal of CO2 predicted by RSM. Based on a validation study, the experimental data showed a percentage error between 0.6% and 2.11% as compared to the predicted value of CO2 removal by RSM.
format Article
author Anuar, Mus'ab Umair Zainul
Taha, Mohd Faisal
Yunus, Noor Mona Md
Ghani, Siti Musliha Mat
Idris, Azila
author_facet Anuar, Mus'ab Umair Zainul
Taha, Mohd Faisal
Yunus, Noor Mona Md
Ghani, Siti Musliha Mat
Idris, Azila
author_sort Anuar, Mus'ab Umair Zainul
title An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology
title_short An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology
title_full An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology
title_fullStr An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology
title_full_unstemmed An optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using RSM-CCD methodology
title_sort optimization study of carbon dioxide absorption into the aqueous solution of monoethanolamine and tetrabutylphosphonium methanesulfonate hybrid solvent using rsm-ccd methodology
publisher MDPI
publishDate 2021
url http://eprints.um.edu.my/26821/
_version_ 1735409462581133312
score 13.214268