The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation
In this work, the effect of changing the polymer host concentration of a film-based saturable absorber (SA) on the performance of a mode-lock laser in an erbium-doped fiber (EDF) ring cavity was demonstrated. Carboxymethylcellulose (CMC) and graphene oxide (GO) films were used as the polymer host an...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2021
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/26659/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.26659 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.266592022-04-06T00:11:15Z http://eprints.um.edu.my/26659/ The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation Ahmad, Harith Hamsan, Hafiz Reduan, Siti Aisyah Norisham, Nur Farahin QC Physics In this work, the effect of changing the polymer host concentration of a film-based saturable absorber (SA) on the performance of a mode-lock laser in an erbium-doped fiber (EDF) ring cavity was demonstrated. Carboxymethylcellulose (CMC) and graphene oxide (GO) films were used as the polymer host and SA respectively with the CMC-GO films being prepared by the solution casting technique. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) analysis showed increased interaction taking place between the polymer host and the SA material as the concentration of the polymer host was increased. Xray diffraction (XRD) analysis reveals the formation of SA aggregation. Elements in the CMC-GO films were verified using energy dispersive X-ray (EDX) analysis. The modulation depth for 3 mg/mL of CMC and 5 mg/mL of CMC were 4.9% and 4.3%, respectively. Mode-locked pulse operation using 5 mg/mL has a shorter pulse width and broader 3 dB bandwidth than 3 mg/mL. The peak power and pulse energy of 5 mg/mL mode-locked operation were higher than 3 mg/mL. The film with 5 mg/mL shows better stability which was confirmed by the signal-to-noise ratio results. Elsevier 2021-12 Article PeerReviewed Ahmad, Harith and Hamsan, Hafiz and Reduan, Siti Aisyah and Norisham, Nur Farahin (2021) The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation. Optical Materials, 122 (B). ISSN 0925-3467, DOI https://doi.org/10.1016/j.optmat.2021.111699 <https://doi.org/10.1016/j.optmat.2021.111699>. 10.1016/j.optmat.2021.111699 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QC Physics |
spellingShingle |
QC Physics Ahmad, Harith Hamsan, Hafiz Reduan, Siti Aisyah Norisham, Nur Farahin The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation |
description |
In this work, the effect of changing the polymer host concentration of a film-based saturable absorber (SA) on the performance of a mode-lock laser in an erbium-doped fiber (EDF) ring cavity was demonstrated. Carboxymethylcellulose (CMC) and graphene oxide (GO) films were used as the polymer host and SA respectively with the CMC-GO films being prepared by the solution casting technique. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) analysis showed increased interaction taking place between the polymer host and the SA material as the concentration of the polymer host was increased. Xray diffraction (XRD) analysis reveals the formation of SA aggregation. Elements in the CMC-GO films were verified using energy dispersive X-ray (EDX) analysis. The modulation depth for 3 mg/mL of CMC and 5 mg/mL of CMC were 4.9% and 4.3%, respectively. Mode-locked pulse operation using 5 mg/mL has a shorter pulse width and broader 3 dB bandwidth than 3 mg/mL. The peak power and pulse energy of 5 mg/mL mode-locked operation were higher than 3 mg/mL. The film with 5 mg/mL shows better stability which was confirmed by the signal-to-noise ratio results. |
format |
Article |
author |
Ahmad, Harith Hamsan, Hafiz Reduan, Siti Aisyah Norisham, Nur Farahin |
author_facet |
Ahmad, Harith Hamsan, Hafiz Reduan, Siti Aisyah Norisham, Nur Farahin |
author_sort |
Ahmad, Harith |
title |
The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation |
title_short |
The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation |
title_full |
The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation |
title_fullStr |
The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation |
title_full_unstemmed |
The effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation |
title_sort |
effect of carboxymethylcellulose host concentration on the performance of mode-locked pulsed laser generation |
publisher |
Elsevier |
publishDate |
2021 |
url |
http://eprints.um.edu.my/26659/ |
_version_ |
1735409441180745728 |
score |
13.214268 |