Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum

Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Quah, Yixian, Mohd Ismail, Nor Ismaliza, Ooi, Jillian Lean Sim, Affendi, Yang Amri, Abd Manan, Fazilah, Teh, Lai Kuan, Wong, Fai Chu, Chai, Tsun Thai
Format: Article
Published: Springer Verlag 2019
Subjects:
Online Access:http://eprints.um.edu.my/23723/
https://doi.org/10.1631/jzus.B1700586
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC 50 ) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC 50 , AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs. © 2019, Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature.