Development of an economic wireless human motion analysis device for quantitative assessment of human body joint
In recent years, the study of human body dynamics has been attracting a significant amount of attention. Currently there are many camera or active sensor based motion analysis systems available on the market. They have been extensively adopted and used by the film and animation or entertainment indu...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2018
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/21063/ https://doi.org/10.1016/j.measurement.2017.10.056 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.21063 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.210632019-04-24T07:24:16Z http://eprints.um.edu.my/21063/ Development of an economic wireless human motion analysis device for quantitative assessment of human body joint Ong, Zhi Chao Seet, Y.C. Khoo, Shin Yee Noroozi, Siamak TJ Mechanical engineering and machinery In recent years, the study of human body dynamics has been attracting a significant amount of attention. Currently there are many camera or active sensor based motion analysis systems available on the market. They have been extensively adopted and used by the film and animation or entertainment industries such as film and video game producers. More recently their potential in studying human dynamics/motion for medical purposes has been realised to the extent that they are now used to study full body human biomechanics in the form of gait analysis systems. Most orthopaedic surgeries are usually about joint repair or implants. According health line, revision surgery is usually due to infection, continued pain, joint stiffness, wear, instability, loosening. Apart from infection, the rest can be linked to the operation itself. Currently, surgical planning and placing implants is performed in a subjective manner, relying on the surgeon's experience and instinct, current systems to help the surgeon to place implant are also bulky, expensive, slow and not user friendly. The aim of this project is to develop an economic and portable motion assessment system which involves a wireless inertial measurement unit (IMU) dedicated to study and assess body joints. Through the data collected from the IMU, the system is capable real time measurement of relative position and orientation of the human joint. Several tests were conducted to validate the data extracted from gyroscope and accelerometer of the IMU. The joint motion results analysed using the device was compared with the results analysed using commercial video motion analysis software and it shows good correlation. It is found that the gyroscope of the IMU under DMP sensor fusion algorithm and calibration capability is able to give the angular velocity with less than 5% error. This has led to a more accurate orientation data which gives 7% error in average bending angle. Elsevier 2018 Article PeerReviewed Ong, Zhi Chao and Seet, Y.C. and Khoo, Shin Yee and Noroozi, Siamak (2018) Development of an economic wireless human motion analysis device for quantitative assessment of human body joint. Measurement, 115. pp. 306-315. ISSN 0263-2241 https://doi.org/10.1016/j.measurement.2017.10.056 doi:10.1016/j.measurement.2017.10.056 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Ong, Zhi Chao Seet, Y.C. Khoo, Shin Yee Noroozi, Siamak Development of an economic wireless human motion analysis device for quantitative assessment of human body joint |
description |
In recent years, the study of human body dynamics has been attracting a significant amount of attention. Currently there are many camera or active sensor based motion analysis systems available on the market. They have been extensively adopted and used by the film and animation or entertainment industries such as film and video game producers. More recently their potential in studying human dynamics/motion for medical purposes has been realised to the extent that they are now used to study full body human biomechanics in the form of gait analysis systems. Most orthopaedic surgeries are usually about joint repair or implants. According health line, revision surgery is usually due to infection, continued pain, joint stiffness, wear, instability, loosening. Apart from infection, the rest can be linked to the operation itself. Currently, surgical planning and placing implants is performed in a subjective manner, relying on the surgeon's experience and instinct, current systems to help the surgeon to place implant are also bulky, expensive, slow and not user friendly. The aim of this project is to develop an economic and portable motion assessment system which involves a wireless inertial measurement unit (IMU) dedicated to study and assess body joints. Through the data collected from the IMU, the system is capable real time measurement of relative position and orientation of the human joint. Several tests were conducted to validate the data extracted from gyroscope and accelerometer of the IMU. The joint motion results analysed using the device was compared with the results analysed using commercial video motion analysis software and it shows good correlation. It is found that the gyroscope of the IMU under DMP sensor fusion algorithm and calibration capability is able to give the angular velocity with less than 5% error. This has led to a more accurate orientation data which gives 7% error in average bending angle. |
format |
Article |
author |
Ong, Zhi Chao Seet, Y.C. Khoo, Shin Yee Noroozi, Siamak |
author_facet |
Ong, Zhi Chao Seet, Y.C. Khoo, Shin Yee Noroozi, Siamak |
author_sort |
Ong, Zhi Chao |
title |
Development of an economic wireless human motion analysis device for quantitative assessment of human body joint |
title_short |
Development of an economic wireless human motion analysis device for quantitative assessment of human body joint |
title_full |
Development of an economic wireless human motion analysis device for quantitative assessment of human body joint |
title_fullStr |
Development of an economic wireless human motion analysis device for quantitative assessment of human body joint |
title_full_unstemmed |
Development of an economic wireless human motion analysis device for quantitative assessment of human body joint |
title_sort |
development of an economic wireless human motion analysis device for quantitative assessment of human body joint |
publisher |
Elsevier |
publishDate |
2018 |
url |
http://eprints.um.edu.my/21063/ https://doi.org/10.1016/j.measurement.2017.10.056 |
_version_ |
1643691456047611904 |
score |
13.211869 |