Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants

Current work presents a study about the effect of polyaniline (PANI) as an organic semiconductor on the photocatalytic performance of ZnSe nanoparticles (NPs). Pristine ZnSe NPs and ZnSe/PANI nanocomposites were synthesized by a simple and cost-effective co-precipitation method in the ambient condit...

Full description

Saved in:
Bibliographic Details
Main Authors: Shirmardi, Abbas, Teridi, Mohd Asri Mat, Azimi, Hassan Rayat, Basirun, Wan Jefrey, Jamali-Sheini, Farid, Yousefi, Ramin
Format: Article
Published: Elsevier 2018
Subjects:
Online Access:http://eprints.um.edu.my/20674/
https://doi.org/10.1016/j.apsusc.2018.06.252
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.20674
record_format eprints
spelling my.um.eprints.206742019-03-13T01:54:34Z http://eprints.um.edu.my/20674/ Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants Shirmardi, Abbas Teridi, Mohd Asri Mat Azimi, Hassan Rayat Basirun, Wan Jefrey Jamali-Sheini, Farid Yousefi, Ramin Q Science (General) QD Chemistry Current work presents a study about the effect of polyaniline (PANI) as an organic semiconductor on the photocatalytic performance of ZnSe nanoparticles (NPs). Pristine ZnSe NPs and ZnSe/PANI nanocomposites were synthesized by a simple and cost-effective co-precipitation method in the ambient conditions. X-ray diffraction (XRD), Raman, and Fourier-transform infrared spectroscopy (FTIR) results confirmed that, a heterojunction was created by ZnSe NPs and PANI composite. High-resolution transmission electron microscopy (HRTEM) image showed that the NPs were deposited by PANI completely and a core-shell structure was generated by ZnSe and PANI. Photoluminescence (PL) spectroscopy results showed the optical properties of the pristine ZnSe NPs and ZnSe/PANI nanocomposites were similar with lower defect emission intensity for the ZnSe/PANI nanocomposites. However, the PL and UV–Vis results revealed that, the PANI caused a decrease in band-gap value of the ZnSe/PANI nanocomposites in compared to the band-gap value of the pristine ZnSe NPs. In addition, X-ray photoelectron spectroscopy (XPS) results indicated that, the PANI caused a shift in the valance band (VB) and conduction band (CB) edges of ZnSe/PANI nanocomposites in compared with pristine ZnSe NPS. Finally, the photocatalytic performance of the products for removing of methylene blue (MB) and chromate ions was examined under a visible-light source irradiation. An enhancement photocatalytic performance for ZnSe/PANI nanocomposites in compared to the pristine ZnSe NPs was observed. Brunauer–Emmett–Teller (BET) results indicated that textural properties of the nanocomposites were decreased by PANI. According to the optical properties and band gap-value of the products a type-II heterojunction was created by band alignment of the ZnSe and PANI and such heterojunction was the most important factor for the enhancement photocatalytic performance of the ZnSe/PANI nanocomposites in compared to the photocatalytic activity of the pristine ZnSe NPs. Elsevier 2018 Article PeerReviewed Shirmardi, Abbas and Teridi, Mohd Asri Mat and Azimi, Hassan Rayat and Basirun, Wan Jefrey and Jamali-Sheini, Farid and Yousefi, Ramin (2018) Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants. Applied Surface Science, 462. pp. 730-738. ISSN 0169-4332 https://doi.org/10.1016/j.apsusc.2018.06.252 doi:10.1016/j.apsusc.2018.06.252
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic Q Science (General)
QD Chemistry
spellingShingle Q Science (General)
QD Chemistry
Shirmardi, Abbas
Teridi, Mohd Asri Mat
Azimi, Hassan Rayat
Basirun, Wan Jefrey
Jamali-Sheini, Farid
Yousefi, Ramin
Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants
description Current work presents a study about the effect of polyaniline (PANI) as an organic semiconductor on the photocatalytic performance of ZnSe nanoparticles (NPs). Pristine ZnSe NPs and ZnSe/PANI nanocomposites were synthesized by a simple and cost-effective co-precipitation method in the ambient conditions. X-ray diffraction (XRD), Raman, and Fourier-transform infrared spectroscopy (FTIR) results confirmed that, a heterojunction was created by ZnSe NPs and PANI composite. High-resolution transmission electron microscopy (HRTEM) image showed that the NPs were deposited by PANI completely and a core-shell structure was generated by ZnSe and PANI. Photoluminescence (PL) spectroscopy results showed the optical properties of the pristine ZnSe NPs and ZnSe/PANI nanocomposites were similar with lower defect emission intensity for the ZnSe/PANI nanocomposites. However, the PL and UV–Vis results revealed that, the PANI caused a decrease in band-gap value of the ZnSe/PANI nanocomposites in compared to the band-gap value of the pristine ZnSe NPs. In addition, X-ray photoelectron spectroscopy (XPS) results indicated that, the PANI caused a shift in the valance band (VB) and conduction band (CB) edges of ZnSe/PANI nanocomposites in compared with pristine ZnSe NPS. Finally, the photocatalytic performance of the products for removing of methylene blue (MB) and chromate ions was examined under a visible-light source irradiation. An enhancement photocatalytic performance for ZnSe/PANI nanocomposites in compared to the pristine ZnSe NPs was observed. Brunauer–Emmett–Teller (BET) results indicated that textural properties of the nanocomposites were decreased by PANI. According to the optical properties and band gap-value of the products a type-II heterojunction was created by band alignment of the ZnSe and PANI and such heterojunction was the most important factor for the enhancement photocatalytic performance of the ZnSe/PANI nanocomposites in compared to the photocatalytic activity of the pristine ZnSe NPs.
format Article
author Shirmardi, Abbas
Teridi, Mohd Asri Mat
Azimi, Hassan Rayat
Basirun, Wan Jefrey
Jamali-Sheini, Farid
Yousefi, Ramin
author_facet Shirmardi, Abbas
Teridi, Mohd Asri Mat
Azimi, Hassan Rayat
Basirun, Wan Jefrey
Jamali-Sheini, Farid
Yousefi, Ramin
author_sort Shirmardi, Abbas
title Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants
title_short Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants
title_full Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants
title_fullStr Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants
title_full_unstemmed Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants
title_sort enhanced photocatalytic performance of znse/pani nanocomposites for degradation of organic and inorganic pollutants
publisher Elsevier
publishDate 2018
url http://eprints.um.edu.my/20674/
https://doi.org/10.1016/j.apsusc.2018.06.252
_version_ 1643691346909724672
score 13.18916