Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning
In this paper, a hybrid online learning model that combines the fuzzy min–max (FMM) neural network and the Classification and Regression Tree (CART) for motor fault detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, incorporates the advantages of both FMM and CART for u...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Springer Verlag
2016
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/17733/ http://dx.doi.org/10.1007/s10845-014-0950-3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.17733 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.177332019-02-25T02:29:02Z http://eprints.um.edu.my/17733/ Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning Seera, M. Lim, C.P. Loo, C.K. QA75 Electronic computers. Computer science In this paper, a hybrid online learning model that combines the fuzzy min–max (FMM) neural network and the Classification and Regression Tree (CART) for motor fault detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, incorporates the advantages of both FMM and CART for undertaking data classification (with FMM) and rule extraction (with CART) problems. In particular, the CART model is enhanced with an importance predictor-based feature selection measure. To evaluate the effectiveness of the proposed online FMM-CART model, a series of experiments using publicly available data sets containing motor bearing faults is first conducted. The results (primarily prediction accuracy and model complexity) are analyzed and compared with those reported in the literature. Then, an experimental study on detecting imbalanced voltage supply of an induction motor using a laboratory-scale test rig is performed. In addition to producing accurate results, a set of rules in the form of a decision tree is extracted from FMM-CART to provide explanations for its predictions. The results positively demonstrate the usefulness of FMM-CART with online learning capabilities in tackling real-world motor fault detection and diagnosis tasks. Springer Verlag 2016 Article PeerReviewed Seera, M. and Lim, C.P. and Loo, C.K. (2016) Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning. Journal of Intelligent Manufacturing, 27 (6). pp. 1273-1285. ISSN 0956-5515 http://dx.doi.org/10.1007/s10845-014-0950-3 doi:10.1007/s10845-014-0950-3 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Seera, M. Lim, C.P. Loo, C.K. Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning |
description |
In this paper, a hybrid online learning model that combines the fuzzy min–max (FMM) neural network and the Classification and Regression Tree (CART) for motor fault detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, incorporates the advantages of both FMM and CART for undertaking data classification (with FMM) and rule extraction (with CART) problems. In particular, the CART model is enhanced with an importance predictor-based feature selection measure. To evaluate the effectiveness of the proposed online FMM-CART model, a series of experiments using publicly available data sets containing motor bearing faults is first conducted. The results (primarily prediction accuracy and model complexity) are analyzed and compared with those reported in the literature. Then, an experimental study on detecting imbalanced voltage supply of an induction motor using a laboratory-scale test rig is performed. In addition to producing accurate results, a set of rules in the form of a decision tree is extracted from FMM-CART to provide explanations for its predictions. The results positively demonstrate the usefulness of FMM-CART with online learning capabilities in tackling real-world motor fault detection and diagnosis tasks. |
format |
Article |
author |
Seera, M. Lim, C.P. Loo, C.K. |
author_facet |
Seera, M. Lim, C.P. Loo, C.K. |
author_sort |
Seera, M. |
title |
Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning |
title_short |
Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning |
title_full |
Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning |
title_fullStr |
Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning |
title_full_unstemmed |
Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning |
title_sort |
motor fault detection and diagnosis using a hybrid fmm-cart model with online learning |
publisher |
Springer Verlag |
publishDate |
2016 |
url |
http://eprints.um.edu.my/17733/ http://dx.doi.org/10.1007/s10845-014-0950-3 |
_version_ |
1643690503716208640 |
score |
13.211869 |