Metasurface reflector (MSR) loading for high performance small microstrip antenna design
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises plana...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science
2015
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/15744/1/Metasurface_Reflector_%28MSR%29_Loading_for_High_Performance_Small_Microstrip.pdf http://eprints.um.edu.my/15744/ http://www.ncbi.nlm.nih.gov/pubmed/26018795 http://www.ncbi.nlm.nih.gov/pubmed/26018795 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.15744 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.157442017-07-05T01:20:02Z http://eprints.um.edu.my/15744/ Metasurface reflector (MSR) loading for high performance small microstrip antenna design Ahsan, M.R. Islam, M.T. Ullah, M.H. Singh, M.J. Ali, M.T. T Technology (General) TK Electrical engineering. Electronics Nuclear engineering A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (epsilon(r) = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17), 467 to 606 MHz (29) and 758 MHz to 1062 MHz (40) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. Public Library of Science 2015-05-27 Article PeerReviewed application/pdf en http://eprints.um.edu.my/15744/1/Metasurface_Reflector_%28MSR%29_Loading_for_High_Performance_Small_Microstrip.pdf Ahsan, M.R. and Islam, M.T. and Ullah, M.H. and Singh, M.J. and Ali, M.T. (2015) Metasurface reflector (MSR) loading for high performance small microstrip antenna design. PLoS ONE, 10 (5). p. 20. ISSN 1932-6203 http://www.ncbi.nlm.nih.gov/pubmed/26018795 http://www.ncbi.nlm.nih.gov/pubmed/26018795 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
language |
English |
topic |
T Technology (General) TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Ahsan, M.R. Islam, M.T. Ullah, M.H. Singh, M.J. Ali, M.T. Metasurface reflector (MSR) loading for high performance small microstrip antenna design |
description |
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (epsilon(r) = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17), 467 to 606 MHz (29) and 758 MHz to 1062 MHz (40) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. |
format |
Article |
author |
Ahsan, M.R. Islam, M.T. Ullah, M.H. Singh, M.J. Ali, M.T. |
author_facet |
Ahsan, M.R. Islam, M.T. Ullah, M.H. Singh, M.J. Ali, M.T. |
author_sort |
Ahsan, M.R. |
title |
Metasurface reflector (MSR) loading for high performance small microstrip antenna design |
title_short |
Metasurface reflector (MSR) loading for high performance small microstrip antenna design |
title_full |
Metasurface reflector (MSR) loading for high performance small microstrip antenna design |
title_fullStr |
Metasurface reflector (MSR) loading for high performance small microstrip antenna design |
title_full_unstemmed |
Metasurface reflector (MSR) loading for high performance small microstrip antenna design |
title_sort |
metasurface reflector (msr) loading for high performance small microstrip antenna design |
publisher |
Public Library of Science |
publishDate |
2015 |
url |
http://eprints.um.edu.my/15744/1/Metasurface_Reflector_%28MSR%29_Loading_for_High_Performance_Small_Microstrip.pdf http://eprints.um.edu.my/15744/ http://www.ncbi.nlm.nih.gov/pubmed/26018795 http://www.ncbi.nlm.nih.gov/pubmed/26018795 |
_version_ |
1643690124465143808 |
score |
13.214268 |