Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid

Polyhydroxyalkanoates are bacterial biopolyesters having good biocompatibility and biodegradability. Poly[(R)-3-hydroxybutyric acid] is the least expensive/costly and most easily available member of this family. However, poly[(R)-3-hydroxybutyric acid] is very brittle because of its high crystallini...

Full description

Saved in:
Bibliographic Details
Main Authors: Azari, P., Yahya, R., Wong, C.S., Gan, S.N.
Format: Article
Published: Maney Publishing 2014
Subjects:
Online Access:http://eprints.um.edu.my/15479/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.15479
record_format eprints
spelling my.um.eprints.154792015-12-31T00:50:19Z http://eprints.um.edu.my/15479/ Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid Azari, P. Yahya, R. Wong, C.S. Gan, S.N. Q Science (General) Polyhydroxyalkanoates are bacterial biopolyesters having good biocompatibility and biodegradability. Poly[(R)-3-hydroxybutyric acid] is the least expensive/costly and most easily available member of this family. However, poly[(R)-3-hydroxybutyric acid] is very brittle because of its high crystallinity. Its poor processability poses limitations on its application. Blending of this material with another amorphous flexible polymer has been a common practice. In this research, we have improved the properties of poly[(R)-3-hydroxybutyric acid] through blending with a palm oil-based medium-chain length polyhydroxyalkanoate. Solution blending was carried out at four different ratios to produce electrospun fibres. As expected, the addition of medium-chain length polyhydroxyalkanoate has reduced the brittleness of poly[(R)-3-hydroxybutyric acid], through reducing the crystallinity. In addition, it has enabled the reduction of the diameter of the electrospun fibres and shifted it from micrometre towards nanometres, which can improve its porosity and permeability to make it a potential material in biomedical applications. Maney Publishing 2014 Article PeerReviewed Azari, P. and Yahya, R. and Wong, C.S. and Gan, S.N. (2014) Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid. Materials Research Innovations, 18 (S6). pp. 345-349.
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic Q Science (General)
spellingShingle Q Science (General)
Azari, P.
Yahya, R.
Wong, C.S.
Gan, S.N.
Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid
description Polyhydroxyalkanoates are bacterial biopolyesters having good biocompatibility and biodegradability. Poly[(R)-3-hydroxybutyric acid] is the least expensive/costly and most easily available member of this family. However, poly[(R)-3-hydroxybutyric acid] is very brittle because of its high crystallinity. Its poor processability poses limitations on its application. Blending of this material with another amorphous flexible polymer has been a common practice. In this research, we have improved the properties of poly[(R)-3-hydroxybutyric acid] through blending with a palm oil-based medium-chain length polyhydroxyalkanoate. Solution blending was carried out at four different ratios to produce electrospun fibres. As expected, the addition of medium-chain length polyhydroxyalkanoate has reduced the brittleness of poly[(R)-3-hydroxybutyric acid], through reducing the crystallinity. In addition, it has enabled the reduction of the diameter of the electrospun fibres and shifted it from micrometre towards nanometres, which can improve its porosity and permeability to make it a potential material in biomedical applications.
format Article
author Azari, P.
Yahya, R.
Wong, C.S.
Gan, S.N.
author_facet Azari, P.
Yahya, R.
Wong, C.S.
Gan, S.N.
author_sort Azari, P.
title Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid
title_short Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid
title_full Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid
title_fullStr Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid
title_full_unstemmed Improved processability of electrospun poly[(R)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid
title_sort improved processability of electrospun poly[(r)-3-hydroxybutyric acid] through blending with medium-chain length poly(3-hydroxyalkanoates) produced by pseudomonas putida from oleic acid
publisher Maney Publishing
publishDate 2014
url http://eprints.um.edu.my/15479/
_version_ 1643690063446409216
score 13.211869