Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment

Recently, decision support system (DSSs) have become more widely accepted as a support tool for use with telehealth systems, helping clinicians to summarize and digest what would otherwise be an unmanageable volume of data. One of the pillars of a home telehealth system is the performance of unsuper...

Full description

Saved in:
Bibliographic Details
Main Authors: Abd Sukor, J., Mohktar, M.S., Redmond, S.J., Lovell, N.H.
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.um.edu.my/14046/1/Signal_quality_measures_on_pulse_oximetry_and_blood_pressure.pdf
http://eprints.um.edu.my/14046/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6917002
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.14046
record_format eprints
spelling my.um.eprints.140462015-09-22T01:04:22Z http://eprints.um.edu.my/14046/ Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment Abd Sukor, J. Mohktar, M.S. Redmond, S.J. Lovell, N.H. T Technology (General) TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering Recently, decision support system (DSSs) have become more widely accepted as a support tool for use with telehealth systems, helping clinicians to summarize and digest what would otherwise be an unmanageable volume of data. One of the pillars of a home telehealth system is the performance of unsupervised physiological self-measurement by patients in their own homes. Such measurements are prone to error and noise artifact, often due to poor measurement technique and ignorance of the measurement and transduction principles at work. These errors can degrade the quality of the recorded signals and ultimately degrade the performance of the DSS system, which is aiding the clinician in their management of the patient. Developed algorithms for automated quality assessment for pulse oximetry and blood pressure (BP) signals were tested retrospectively with data acquired from a trial that recorded signals in a home environment. The trial involved four aged subjects who performed pulse oximetry and BP measurements by themselves at their home for ten days, three times per day. This trial was set up to mimic the unsupervised physiological self-measurement as in a telehealth system. A manually annotated "gold standard" (GS) was used as the reference against which the developed algorithms were evaluated after analyzing the recordings. The assessment of pulse oximetry signals shows 95 of good sections and 67 of noisy sections were correctly detected by the developed algorithm, and a Cohen's Kappa coefficient (kappa) of 0.58 was obtained in 120 pooled signals. The BP measurement evaluation demonstrates that 75 of the actual noisy sections were correctly classified in 120 pooled signals, with 97 and 91 of the signals correctly identified as worthy of attempting systolic and/or diastolic pressure estimation, respectively, with a mean error and standard deviation of 2.53 +/- 4.20 mmHg and 1.46 +/- 5.29 mmHg when compared to a manually annotated GS. These results demonstrate the feasibility, and highlight the potential benefit, of incorporating automated signal quality assessment algorithms for pulse oximetry and BP recording within a DSS for telehealth patient management. 2015-01 Article PeerReviewed application/pdf en http://eprints.um.edu.my/14046/1/Signal_quality_measures_on_pulse_oximetry_and_blood_pressure.pdf Abd Sukor, J. and Mohktar, M.S. and Redmond, S.J. and Lovell, N.H. (2015) Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment. IEEE Journal of Biomedical and Health Informatics, 19 (1). pp. 102-108. ISSN 2168-2194 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6917002 10.1109/JBHI.2014.2361654
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
language English
topic T Technology (General)
TA Engineering (General). Civil engineering (General)
TK Electrical engineering. Electronics Nuclear engineering
spellingShingle T Technology (General)
TA Engineering (General). Civil engineering (General)
TK Electrical engineering. Electronics Nuclear engineering
Abd Sukor, J.
Mohktar, M.S.
Redmond, S.J.
Lovell, N.H.
Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment
description Recently, decision support system (DSSs) have become more widely accepted as a support tool for use with telehealth systems, helping clinicians to summarize and digest what would otherwise be an unmanageable volume of data. One of the pillars of a home telehealth system is the performance of unsupervised physiological self-measurement by patients in their own homes. Such measurements are prone to error and noise artifact, often due to poor measurement technique and ignorance of the measurement and transduction principles at work. These errors can degrade the quality of the recorded signals and ultimately degrade the performance of the DSS system, which is aiding the clinician in their management of the patient. Developed algorithms for automated quality assessment for pulse oximetry and blood pressure (BP) signals were tested retrospectively with data acquired from a trial that recorded signals in a home environment. The trial involved four aged subjects who performed pulse oximetry and BP measurements by themselves at their home for ten days, three times per day. This trial was set up to mimic the unsupervised physiological self-measurement as in a telehealth system. A manually annotated "gold standard" (GS) was used as the reference against which the developed algorithms were evaluated after analyzing the recordings. The assessment of pulse oximetry signals shows 95 of good sections and 67 of noisy sections were correctly detected by the developed algorithm, and a Cohen's Kappa coefficient (kappa) of 0.58 was obtained in 120 pooled signals. The BP measurement evaluation demonstrates that 75 of the actual noisy sections were correctly classified in 120 pooled signals, with 97 and 91 of the signals correctly identified as worthy of attempting systolic and/or diastolic pressure estimation, respectively, with a mean error and standard deviation of 2.53 +/- 4.20 mmHg and 1.46 +/- 5.29 mmHg when compared to a manually annotated GS. These results demonstrate the feasibility, and highlight the potential benefit, of incorporating automated signal quality assessment algorithms for pulse oximetry and BP recording within a DSS for telehealth patient management.
format Article
author Abd Sukor, J.
Mohktar, M.S.
Redmond, S.J.
Lovell, N.H.
author_facet Abd Sukor, J.
Mohktar, M.S.
Redmond, S.J.
Lovell, N.H.
author_sort Abd Sukor, J.
title Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment
title_short Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment
title_full Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment
title_fullStr Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment
title_full_unstemmed Signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment
title_sort signal quality measures on pulse oximetry and blood pressure signals acquired from self-measurement in a home environment
publishDate 2015
url http://eprints.um.edu.my/14046/1/Signal_quality_measures_on_pulse_oximetry_and_blood_pressure.pdf
http://eprints.um.edu.my/14046/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6917002
_version_ 1643689720535842816
score 13.209306