Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.]
3D printing is increasingly adopted in the biomedical field, particularly for developing adaptive assistive devices. Common materials for Fused Deposition Modelling (FDM) include Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyethylene Terephthalate Glycol (PETG). With the grow...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)
2023
|
Subjects: | |
Online Access: | https://ir.uitm.edu.my/id/eprint/87260/1/87260.pdf https://ir.uitm.edu.my/id/eprint/87260/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uitm.ir.87260 |
---|---|
record_format |
eprints |
spelling |
my.uitm.ir.872602023-11-16T09:00:59Z https://ir.uitm.edu.my/id/eprint/87260/ Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.] jmeche Mazlan, Mohammad Azeeb Mustar, Muhammad Fadil Abdullah, Abdul Halim Che Zakaria, Noor Ayuni Mohamad Hashim, Natiara Pangesty, Azizah Intan Biomedical engineering TP Chemical technology 3D printing is increasingly adopted in the biomedical field, particularly for developing adaptive assistive devices. Common materials for Fused Deposition Modelling (FDM) include Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyethylene Terephthalate Glycol (PETG). With the growing demand to identify the best materials and parameter settings for these applications, our project focuses on creating a 3D model of tensile test specimens with varying infill densities, wall perimeters, and layer heights for both ABS and PETG materials. Our goal is to evaluate how these parameter settings affect the tensile properties of each material. We fabricated the 3D specimen model following ASTM D638-14 Type I dimensions and conducted tensile tests using a Universal Testing Machine at a 5mm/min feed rate. Our results indicate that increasing infill density enhances Young's modulus and tensile strength for both ABS and PETG materials. Young's modulus for ABS shows marginal improvement with different wall perimeters. A similar trend is observed in Young's modulus and tensile strength for ABS and PETG at different layer heights. PETG exhibits higher tensile strength, while ABS demonstrates greater stiffness Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM) 2023-11 Article PeerReviewed text en https://ir.uitm.edu.my/id/eprint/87260/1/87260.pdf Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.]. (2023) Journal of Mechanical Engineering (JMechE) <https://ir.uitm.edu.my/view/publication/Journal_of_Mechanical_Engineering_=28JMechE=29/>, 12 (1): 6. pp. 101-117. ISSN 1823-5514 ; 2550-164X |
institution |
Universiti Teknologi Mara |
building |
Tun Abdul Razak Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Mara |
content_source |
UiTM Institutional Repository |
url_provider |
http://ir.uitm.edu.my/ |
language |
English |
topic |
Biomedical engineering TP Chemical technology |
spellingShingle |
Biomedical engineering TP Chemical technology Mazlan, Mohammad Azeeb Mustar, Muhammad Fadil Abdullah, Abdul Halim Che Zakaria, Noor Ayuni Mohamad Hashim, Natiara Pangesty, Azizah Intan Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.] |
description |
3D printing is increasingly adopted in the biomedical field, particularly for developing adaptive assistive devices. Common materials for Fused Deposition Modelling (FDM) include Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyethylene Terephthalate Glycol (PETG). With the growing demand to identify the best materials and parameter settings for these applications, our project focuses on creating a 3D model of tensile test specimens with varying infill densities, wall perimeters, and layer heights for both ABS and PETG materials. Our goal is to evaluate how these parameter settings affect the tensile properties of each material. We fabricated the 3D specimen model following ASTM D638-14 Type I dimensions and conducted tensile tests using a Universal Testing Machine at a 5mm/min feed rate. Our results indicate that increasing infill density enhances Young's modulus and tensile strength for both ABS and PETG materials. Young's modulus for ABS shows marginal improvement with different wall perimeters. A similar trend is observed in Young's modulus and tensile strength for ABS and PETG at different layer heights. PETG exhibits higher tensile strength, while ABS demonstrates greater stiffness |
format |
Article |
author |
Mazlan, Mohammad Azeeb Mustar, Muhammad Fadil Abdullah, Abdul Halim Che Zakaria, Noor Ayuni Mohamad Hashim, Natiara Pangesty, Azizah Intan |
author_facet |
Mazlan, Mohammad Azeeb Mustar, Muhammad Fadil Abdullah, Abdul Halim Che Zakaria, Noor Ayuni Mohamad Hashim, Natiara Pangesty, Azizah Intan |
author_sort |
Mazlan, Mohammad Azeeb |
title |
Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.] |
title_short |
Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.] |
title_full |
Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.] |
title_fullStr |
Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.] |
title_full_unstemmed |
Effects of printing parameters on the mechanical strength of thermoplastics 3D printed specimens / Mohammad Azeeb Mazlan ... [et al.] |
title_sort |
effects of printing parameters on the mechanical strength of thermoplastics 3d printed specimens / mohammad azeeb mazlan ... [et al.] |
publisher |
Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM) |
publishDate |
2023 |
url |
https://ir.uitm.edu.my/id/eprint/87260/1/87260.pdf https://ir.uitm.edu.my/id/eprint/87260/ |
_version_ |
1783882342299860992 |
score |
13.211869 |