Supercapacitor and dyesensitized solar cell based on quasi-solid state polymer electrolyte and iron cobaltite electrode / Farish Irfal Saaid

Electrochemical devices based on liquid electrolytes are known to have high performance. However, problems associated with liquid electrolytes are electrolyte leakage, volatilization and corrosion of the electrode. The quasi-solid state polymer electrolytes (QSSPEs) are used in these devices to over...

Full description

Saved in:
Bibliographic Details
Main Author: Saaid, Farish Irfal
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/75210/1/75210.pdf
https://ir.uitm.edu.my/id/eprint/75210/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrochemical devices based on liquid electrolytes are known to have high performance. However, problems associated with liquid electrolytes are electrolyte leakage, volatilization and corrosion of the electrode. The quasi-solid state polymer electrolytes (QSSPEs) are used in these devices to overcome the shortcomings of liquid electrolytes. In this work, the QSSPEs were used in both supercapacitor and dyesensitized solar cells (DSSCs). For supercapacitor, a typical QSSPE was prepared by incorporating 0.4 g polyvinyl alcohol (PVA) in a 2 M potassium hydroxide (KOH) dissolved in distilled water. Whereas for DSSC, an optimize QSSPE was prepared by incorporating poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-FIFP) in a propylene carbonate (PC) / 1,2-dimethoxy ethane (DME) / l-methyl-3- propylimidazolium iodide (MPII) liquid electrolyte. The semi-crystalline PVdF-FIFP was used as a gelling agent because crystalline VdF provides mechanical strength to the electrolyte, whereas the amorphous HFP entraps the liquid electrolyte.