Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli

Petroleum refineries generate huge volumes of petroleum sludge during the process of refining crude oil. It is well known that petroleum sludge contains toxic, mutagenic and carcinogenic compounds that constitute hazard to human and the environme nt. Applications of bioremediation in not a new metho...

Full description

Saved in:
Bibliographic Details
Main Author: Dzulkafli, Noor Fazreen
Format: Thesis
Language:English
Published: 2007
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/27210/2/27210.pdf
https://ir.uitm.edu.my/id/eprint/27210/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uitm.ir.27210
record_format eprints
spelling my.uitm.ir.272102023-04-07T04:21:47Z https://ir.uitm.edu.my/id/eprint/27210/ Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli Dzulkafli, Noor Fazreen Petroleum refining. Petroleum products Petroleum refineries generate huge volumes of petroleum sludge during the process of refining crude oil. It is well known that petroleum sludge contains toxic, mutagenic and carcinogenic compounds that constitute hazard to human and the environme nt. Applications of bioremediation in not a new method for treatment of petroleum hydrocarbons contaminations. With advances in biotechnology, bioremediation has become one of the most rapidly developing fields of environmental restoration. Petroleum hydrocarbons can be degraded by microorganisms such as bacteria, fungi and yeast. However, bacteria play the central role in hydrocarbon degradat ion. The driving force for petroleum biodegradation is the ability of microorganisms to utilize hydrocarbons to satisfy their cell growth and energy needs. Studies on the microbial processes to degrade hydrocarbon from several countries in arid region to date have established information on the best consortium of microorganisms to be used. However, very few reports are available on studies in tropical countries like Malaysia. Thus, this study investigates microbial species present in petroleum sludge that are capable of degrading hydrocarbon. Hydrocarbons used in this study include low chain hydrocarbon; n-decane, tetradecane, pentadecane and do-decane and also PAH namely; phenathrane, anthracene and dibenzothiophene. A series of experiments were conducted to enrich and isolates bacteria strains that are capable of degrading the hydrocarbons. These were followed by hydrocarbon degradation test and identification of bacteria strains that are capable of degrading hydrocarbon. Hydrocarbon degradation tests were done by using microtiter plate technique with INT as the indicator. A total of 53 strains capab le of degrading hydrocarbon were successfully isolated. Three of best strains were selected to be identified by using biochemical test. The best active strains were selected base on their ability to degrade PAH compound namely; phenathrane, anthracene and dibenzothiophene. These three strains were identified as Clavibacter michiganesis ss insidiosus, Brevibacterium otitidis and Rhodococcus rhodochrus. 2007 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/27210/2/27210.pdf Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli. (2007) Masters thesis, thesis, Universiti Teknologi MARA (UiTM). <http://terminalib.uitm.edu.my/27210.pdf>
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Petroleum refining. Petroleum products
spellingShingle Petroleum refining. Petroleum products
Dzulkafli, Noor Fazreen
Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli
description Petroleum refineries generate huge volumes of petroleum sludge during the process of refining crude oil. It is well known that petroleum sludge contains toxic, mutagenic and carcinogenic compounds that constitute hazard to human and the environme nt. Applications of bioremediation in not a new method for treatment of petroleum hydrocarbons contaminations. With advances in biotechnology, bioremediation has become one of the most rapidly developing fields of environmental restoration. Petroleum hydrocarbons can be degraded by microorganisms such as bacteria, fungi and yeast. However, bacteria play the central role in hydrocarbon degradat ion. The driving force for petroleum biodegradation is the ability of microorganisms to utilize hydrocarbons to satisfy their cell growth and energy needs. Studies on the microbial processes to degrade hydrocarbon from several countries in arid region to date have established information on the best consortium of microorganisms to be used. However, very few reports are available on studies in tropical countries like Malaysia. Thus, this study investigates microbial species present in petroleum sludge that are capable of degrading hydrocarbon. Hydrocarbons used in this study include low chain hydrocarbon; n-decane, tetradecane, pentadecane and do-decane and also PAH namely; phenathrane, anthracene and dibenzothiophene. A series of experiments were conducted to enrich and isolates bacteria strains that are capable of degrading the hydrocarbons. These were followed by hydrocarbon degradation test and identification of bacteria strains that are capable of degrading hydrocarbon. Hydrocarbon degradation tests were done by using microtiter plate technique with INT as the indicator. A total of 53 strains capab le of degrading hydrocarbon were successfully isolated. Three of best strains were selected to be identified by using biochemical test. The best active strains were selected base on their ability to degrade PAH compound namely; phenathrane, anthracene and dibenzothiophene. These three strains were identified as Clavibacter michiganesis ss insidiosus, Brevibacterium otitidis and Rhodococcus rhodochrus.
format Thesis
author Dzulkafli, Noor Fazreen
author_facet Dzulkafli, Noor Fazreen
author_sort Dzulkafli, Noor Fazreen
title Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli
title_short Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli
title_full Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli
title_fullStr Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli
title_full_unstemmed Bioremediation of petroleum sludge from the Exxon Mobil petroleum refining plant at Kerteh, Malaysia / Noor Fazreen Dzulkafli
title_sort bioremediation of petroleum sludge from the exxon mobil petroleum refining plant at kerteh, malaysia / noor fazreen dzulkafli
publishDate 2007
url https://ir.uitm.edu.my/id/eprint/27210/2/27210.pdf
https://ir.uitm.edu.my/id/eprint/27210/
_version_ 1762841149285859328
score 13.149126