Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad

The presence of features such as cursive, diversity of writing styles and sizes of characters in a Jawi text, ligature, and vertical overlapping make the recognition of Jawi handwritten text to be difficult. For the recognition system based on model development using windows, the presence of such fe...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamad, Roslim
Format: Book Section
Language:English
Published: Institute of Graduate Studies, UiTM 2018
Subjects:
Online Access:http://ir.uitm.edu.my/id/eprint/20699/1/ABS_ROSLIM%20MOHAMAD%20TDRA%20VOL%2013%20IGS_18.pdf
http://ir.uitm.edu.my/id/eprint/20699/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uitm.ir.20699
record_format eprints
spelling my.uitm.ir.206992018-07-20T03:37:37Z http://ir.uitm.edu.my/id/eprint/20699/ Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad Mohamad, Roslim Educational technology Instruments and machines The presence of features such as cursive, diversity of writing styles and sizes of characters in a Jawi text, ligature, and vertical overlapping make the recognition of Jawi handwritten text to be difficult. For the recognition system based on model development using windows, the presence of such features cause the resulting model to be less consistent, where it produces a different sequence of primitive structures of words/ sub-words from the same lexicon. To overcome the inconsistency model problem, a handwritten Jawi text recognition system based on a subword model has been developed. The proposed modeling technique which is known as Selection Segmentation-Free (SSF) separates core and connection structure of a sub-word into a different window. The resulting window will go through a selection process to determine the windows that will be used to represent the sub-word model. In order to increase accuracy and efficiency of the representation feature, two categories of features which are known as primary and secondary features were extracted from each of the selected windows. Primary feature were extracted using Window Code Representation (WCR) technique from main structure. Secondary feature for supporting the primary feature were extracted from dot and main structure. For the experiment purposes, a total of 1200 sub-words of 80 lexicons were used. Each lexicon is randomly selected and divided into three sets. Three experiments to evaluate the performance of SSF, WCR and combination of primary and secondary feature techniques were conducted. The three techniques are combined to represent the proposed system and compared with the comparison system introduced by Remon (2009). Comparison result shows that the recognition rate of proposed system (84.8%) is better than comparison system (79.1%). Institute of Graduate Studies, UiTM 2018 Book Section PeerReviewed text en http://ir.uitm.edu.my/id/eprint/20699/1/ABS_ROSLIM%20MOHAMAD%20TDRA%20VOL%2013%20IGS_18.pdf Mohamad, Roslim (2018) Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad. In: The Doctoral Research Abstracts. IPSis Biannual Publication, 13 (13). Institute of Graduate Studies, UiTM, Shah Alam.
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Educational technology
Instruments and machines
spellingShingle Educational technology
Instruments and machines
Mohamad, Roslim
Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad
description The presence of features such as cursive, diversity of writing styles and sizes of characters in a Jawi text, ligature, and vertical overlapping make the recognition of Jawi handwritten text to be difficult. For the recognition system based on model development using windows, the presence of such features cause the resulting model to be less consistent, where it produces a different sequence of primitive structures of words/ sub-words from the same lexicon. To overcome the inconsistency model problem, a handwritten Jawi text recognition system based on a subword model has been developed. The proposed modeling technique which is known as Selection Segmentation-Free (SSF) separates core and connection structure of a sub-word into a different window. The resulting window will go through a selection process to determine the windows that will be used to represent the sub-word model. In order to increase accuracy and efficiency of the representation feature, two categories of features which are known as primary and secondary features were extracted from each of the selected windows. Primary feature were extracted using Window Code Representation (WCR) technique from main structure. Secondary feature for supporting the primary feature were extracted from dot and main structure. For the experiment purposes, a total of 1200 sub-words of 80 lexicons were used. Each lexicon is randomly selected and divided into three sets. Three experiments to evaluate the performance of SSF, WCR and combination of primary and secondary feature techniques were conducted. The three techniques are combined to represent the proposed system and compared with the comparison system introduced by Remon (2009). Comparison result shows that the recognition rate of proposed system (84.8%) is better than comparison system (79.1%).
format Book Section
author Mohamad, Roslim
author_facet Mohamad, Roslim
author_sort Mohamad, Roslim
title Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad
title_short Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad
title_full Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad
title_fullStr Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad
title_full_unstemmed Jawi sub-word recognition system using window-based segmentation-free approach / Roslim Mohamad
title_sort jawi sub-word recognition system using window-based segmentation-free approach / roslim mohamad
publisher Institute of Graduate Studies, UiTM
publishDate 2018
url http://ir.uitm.edu.my/id/eprint/20699/1/ABS_ROSLIM%20MOHAMAD%20TDRA%20VOL%2013%20IGS_18.pdf
http://ir.uitm.edu.my/id/eprint/20699/
_version_ 1685649372356804608
score 13.214268