Preservers of pairs of bivectors with bounded distance

We extend Liu's fundamental theorem of the geometry of alternate matrices to the second exterior power of an infinite dimensional vector space and also use her theorem to characterize surjective mappings T from the vector space V of all n x n alternate matrices over a field with at least th...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Lim, Ming-Huat, Tan, Joshua Juat-Huan
التنسيق: مقال
منشور في: Elsevier 2009
الموضوعات:
الوصول للمادة أونلاين:http://library.oum.edu.my/repository/284/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:We extend Liu's fundamental theorem of the geometry of alternate matrices to the second exterior power of an infinite dimensional vector space and also use her theorem to characterize surjective mappings T from the vector space V of all n x n alternate matrices over a field with at least three elements onto itself such that for any pair A,B in V,rank(A - B) <= 2k if and only if rank(T(A) - T(B)) <=2k, where k is a fixed positive integer such that n >= 2k + 2 and k >= 2. (Authors' abstract)