Strictly non-volterra Quadratic Stochastic Operator (QSO) on 3-dimensional simplex

In this paper, we investigate the dynamics of the Lebesque quadratic stochastic operator on the set of all Lebesque measures of the set X = [0,1] . We consider the family of functions such that for any fixed x, y a probability measure P(x, y,.) is absolutely continuous with respect to usual Lebesq...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ganikhodjaev, Nasir, Jusoo, Siti Hasana
التنسيق: مقال
اللغة:English
English
English
منشور في: Institute of Physics Publishing 2018
الموضوعات:
الوصول للمادة أونلاين:http://irep.iium.edu.my/66206/1/66206_Strictly%20non-Volterra%20quadratic%20stochastic.pdf
http://irep.iium.edu.my/66206/2/66206_Strictly%20non-Volterra%20quadratic%20stochastic_SCOPUS.pdf
http://irep.iium.edu.my/66206/3/66206_Strictly%20non-Volterra%20quadratic%20stochastic_WOS.pdf
http://irep.iium.edu.my/66206/
https://aip.scitation.org/doi/abs/10.1063/1.5041664?journalCode=apc
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this paper, we investigate the dynamics of the Lebesque quadratic stochastic operator on the set of all Lebesque measures of the set X = [0,1] . We consider the family of functions such that for any fixed x, y a probability measure P(x, y,.) is absolutely continuous with respect to usual Lebesque measure on X with simple Radon-Nikodym derivative. We construct the family of strictly non-Volterra quadratic stochastic and show that their dynamic behavior coincides with dynamic of strictly non-Volterra quadratic stochastic operator on 3-dimensional simplex.