Comparison of swarm intelligence algorithms for high dimensional optimization problems

High dimensional optimization considers being one of the most challenges that face the algorithms for finding an optimal solution for real-world problems. These problems have been appeared in diverse practical fields including business and industries. Within a huge number of algorithms, selectin...

Full description

Saved in:
Bibliographic Details
Main Authors: Bashath, Samar, Ismail, Amelia Ritahani
Format: Article
Language:English
English
Published: Institute of Advanced Engineering and Science 2018
Subjects:
Online Access:http://irep.iium.edu.my/65214/1/65214_Comparison%20of%20swarm%20intelligence%20algorithms%20for%20high%20dimensional%20optimization%20problems.pdf
http://irep.iium.edu.my/65214/2/65214_Comparison%20of%20swarm%20intelligence%20algorithms%20for%20high%20dimensional%20optimization%20problems_SCOPUS.pdf
http://irep.iium.edu.my/65214/
http://www.iaescore.com/journals/index.php/IJEECS/article/view/10622/8786
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High dimensional optimization considers being one of the most challenges that face the algorithms for finding an optimal solution for real-world problems. These problems have been appeared in diverse practical fields including business and industries. Within a huge number of algorithms, selecting one algorithm among others for solving the high dimensional optimization problem is not an easily accomplished task. This paper presents a comprehensive study of two swarm intelligence based algorithms: 1- particle swarm optimization (PSO), 2-cuckoo search (CS).The two algorithms are analyzed and compared for problems consisting of high dimensions in respect of solution accuracy, and runtime performance by various classes of benchmark functions.