A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model

High temperature stability of the band-gap energy of the active layer material of a semiconductor device is one of the major challenges in the field of semiconductor optoelectronic device design. It is essential to ensure the stability in different band-gap energy-dependent characteristics of the se...

Full description

Saved in:
Bibliographic Details
Main Authors: Al Humayun, Md Abdullah, Alam, A. H. M. Zahirul, Khan, Sheroz, Abdul Malek, Mohamed Fareq, Rashid, Mohd Abdur
Format: Article
Language:English
English
Published: International Islamic University Malaysia-IIUM 2017
Subjects:
Online Access:http://irep.iium.edu.my/59526/13/59526_A%20comparative%20analysis%20of%20the%20effect%20of%20temperature_article.pdf
http://irep.iium.edu.my/59526/7/59526_A%20comparative%20analysis%20of%20the%20effect%20of%20temperature%20on%20band-gap%20energy%20of%20gallium%20nitride_SCOPUS.pdf
http://irep.iium.edu.my/59526/
http://journals.iium.edu.my/ejournal/index.php/iiumej/pages/view/future_articles
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.iium.irep.59526
record_format dspace
spelling my.iium.irep.595262018-03-27T01:41:10Z http://irep.iium.edu.my/59526/ A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model Al Humayun, Md Abdullah Alam, A. H. M. Zahirul Khan, Sheroz Abdul Malek, Mohamed Fareq Rashid, Mohd Abdur TK Electrical engineering. Electronics Nuclear engineering High temperature stability of the band-gap energy of the active layer material of a semiconductor device is one of the major challenges in the field of semiconductor optoelectronic device design. It is essential to ensure the stability in different band-gap energy-dependent characteristics of the semiconductor material used to fabricate these devices either directly or indirectly. Different models have been widely used to analyze the band-gap energy-dependent characteristics at different temperatures. The most commonly used methods to analyze the temperature dependence of band-gap energy of semiconductor materials are: the Passler model, the Bose–Einstein model, and Varshni’s model. This paper is going to report the limitation of the Bose–Einstein model through a comparative analysis between the Bose–Einstein model and Varshni’s model. The numerical analysis is carried out considering GaN, as it is one of the most widely used semiconductor materials all over the world. From the numerical results it is ascertained that below the temperature of 95 K both the models show almost same characteristics. However, beyond 95 K Varshni’s model shows weaker temperature dependence than that of the Bose–Einstein model. Varshni’s model shows that the band-gap energy of GaN at 300 K is found to be 3.43 eV, which establishes a good agreement with the theoretically calculated band-gap energy of GaN for operation at room temperature. Kestabilan bahan peranti semikonduktor pada suhu tinggi di lapisan aktif jurang tenaga (band-gap) adalah salah satu cabaran penting dalam bidang reka bentuk peranti optoelektronik semikonduktor. Faktor ini bergantung kepada bahan semikonduktor yang digunakan untuk proses fabrikasi peranti elektronik ini samada secara langsung atau tidak langsung, bagi memastikan kestabilan dalam pelbagai jurang lapisan tenaga. Model yang berbeza telah digunakan secara meluas untuk mengkaji kebergantungan ciri jurang lapisan tenaga bahan semikonduktor pada suhu yang berbeza. Kaedah yang paling biasa digunakan untuk menganalisa kebergantungan jurang lapisan tenaga bahan semikonduktor pada suhu adalah: model Passler, model Bose-Einstein dan model Varshni. Sementara itu pada suhu melebihi 95K, model Varshni menunjukkan kebergantungan pada suhu adalah lemah berbanding model Bose-Einstein. Model Varshni menunjukkan bahawa jurang tenaga bagi GaN pada suhu 300 K adalah 3.43 eV, di mana ia adalah tepat dan bersamaan dengan kiraan teori pada jurang lapisan tenaga GaN untuk beroperasi pada suhu bilik. International Islamic University Malaysia-IIUM 2017-12 Article REM application/pdf en http://irep.iium.edu.my/59526/13/59526_A%20comparative%20analysis%20of%20the%20effect%20of%20temperature_article.pdf application/pdf en http://irep.iium.edu.my/59526/7/59526_A%20comparative%20analysis%20of%20the%20effect%20of%20temperature%20on%20band-gap%20energy%20of%20gallium%20nitride_SCOPUS.pdf Al Humayun, Md Abdullah and Alam, A. H. M. Zahirul and Khan, Sheroz and Abdul Malek, Mohamed Fareq and Rashid, Mohd Abdur (2017) A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model. IIUM Engineering Journal, 18 (2). pp. 151-157. ISSN 1511-788X http://journals.iium.edu.my/ejournal/index.php/iiumej/pages/view/future_articles
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Al Humayun, Md Abdullah
Alam, A. H. M. Zahirul
Khan, Sheroz
Abdul Malek, Mohamed Fareq
Rashid, Mohd Abdur
A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model
description High temperature stability of the band-gap energy of the active layer material of a semiconductor device is one of the major challenges in the field of semiconductor optoelectronic device design. It is essential to ensure the stability in different band-gap energy-dependent characteristics of the semiconductor material used to fabricate these devices either directly or indirectly. Different models have been widely used to analyze the band-gap energy-dependent characteristics at different temperatures. The most commonly used methods to analyze the temperature dependence of band-gap energy of semiconductor materials are: the Passler model, the Bose–Einstein model, and Varshni’s model. This paper is going to report the limitation of the Bose–Einstein model through a comparative analysis between the Bose–Einstein model and Varshni’s model. The numerical analysis is carried out considering GaN, as it is one of the most widely used semiconductor materials all over the world. From the numerical results it is ascertained that below the temperature of 95 K both the models show almost same characteristics. However, beyond 95 K Varshni’s model shows weaker temperature dependence than that of the Bose–Einstein model. Varshni’s model shows that the band-gap energy of GaN at 300 K is found to be 3.43 eV, which establishes a good agreement with the theoretically calculated band-gap energy of GaN for operation at room temperature. Kestabilan bahan peranti semikonduktor pada suhu tinggi di lapisan aktif jurang tenaga (band-gap) adalah salah satu cabaran penting dalam bidang reka bentuk peranti optoelektronik semikonduktor. Faktor ini bergantung kepada bahan semikonduktor yang digunakan untuk proses fabrikasi peranti elektronik ini samada secara langsung atau tidak langsung, bagi memastikan kestabilan dalam pelbagai jurang lapisan tenaga. Model yang berbeza telah digunakan secara meluas untuk mengkaji kebergantungan ciri jurang lapisan tenaga bahan semikonduktor pada suhu yang berbeza. Kaedah yang paling biasa digunakan untuk menganalisa kebergantungan jurang lapisan tenaga bahan semikonduktor pada suhu adalah: model Passler, model Bose-Einstein dan model Varshni. Sementara itu pada suhu melebihi 95K, model Varshni menunjukkan kebergantungan pada suhu adalah lemah berbanding model Bose-Einstein. Model Varshni menunjukkan bahawa jurang tenaga bagi GaN pada suhu 300 K adalah 3.43 eV, di mana ia adalah tepat dan bersamaan dengan kiraan teori pada jurang lapisan tenaga GaN untuk beroperasi pada suhu bilik.
format Article
author Al Humayun, Md Abdullah
Alam, A. H. M. Zahirul
Khan, Sheroz
Abdul Malek, Mohamed Fareq
Rashid, Mohd Abdur
author_facet Al Humayun, Md Abdullah
Alam, A. H. M. Zahirul
Khan, Sheroz
Abdul Malek, Mohamed Fareq
Rashid, Mohd Abdur
author_sort Al Humayun, Md Abdullah
title A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model
title_short A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model
title_full A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model
title_fullStr A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model
title_full_unstemmed A comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a Bose–Einstein model and Varshni'S model
title_sort comparative analysis of the effect of temperature on band-gap energy of gallium nitride and its stability beyond room temperature using a bose–einstein model and varshni's model
publisher International Islamic University Malaysia-IIUM
publishDate 2017
url http://irep.iium.edu.my/59526/13/59526_A%20comparative%20analysis%20of%20the%20effect%20of%20temperature_article.pdf
http://irep.iium.edu.my/59526/7/59526_A%20comparative%20analysis%20of%20the%20effect%20of%20temperature%20on%20band-gap%20energy%20of%20gallium%20nitride_SCOPUS.pdf
http://irep.iium.edu.my/59526/
http://journals.iium.edu.my/ejournal/index.php/iiumej/pages/view/future_articles
_version_ 1643615606474276864
score 13.211869