Orthogonality preserving infinite dimensional quadratic stochastic operators

In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator...

Full description

Saved in:
Bibliographic Details
Main Authors: Akin, Hasan, Mukhamedov, Farrukh
Format: Article
Language:English
English
Published: American Institute of Physics 2015
Subjects:
Online Access:http://irep.iium.edu.my/44787/1/mf-hasan-AIP-2015.pdf
http://irep.iium.edu.my/44787/4/44787_Orthogonality%20preserving%20infinite%20dimensional%20quadratic%20stochastic%20operators_SCOPUS.pdf
http://irep.iium.edu.my/44787/
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4930434
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.iium.irep.44787
record_format dspace
spelling my.iium.irep.447872018-03-06T03:49:28Z http://irep.iium.edu.my/44787/ Orthogonality preserving infinite dimensional quadratic stochastic operators Akin, Hasan Mukhamedov, Farrukh QA Mathematics In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators. American Institute of Physics 2015 Article REM application/pdf en http://irep.iium.edu.my/44787/1/mf-hasan-AIP-2015.pdf application/pdf en http://irep.iium.edu.my/44787/4/44787_Orthogonality%20preserving%20infinite%20dimensional%20quadratic%20stochastic%20operators_SCOPUS.pdf Akin, Hasan and Mukhamedov, Farrukh (2015) Orthogonality preserving infinite dimensional quadratic stochastic operators. AIP Conference Proceedings, 1676. 020008-1. ISSN 0094-243X http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4930434 10.1063/1.4930434
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
topic QA Mathematics
spellingShingle QA Mathematics
Akin, Hasan
Mukhamedov, Farrukh
Orthogonality preserving infinite dimensional quadratic stochastic operators
description In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
format Article
author Akin, Hasan
Mukhamedov, Farrukh
author_facet Akin, Hasan
Mukhamedov, Farrukh
author_sort Akin, Hasan
title Orthogonality preserving infinite dimensional quadratic stochastic operators
title_short Orthogonality preserving infinite dimensional quadratic stochastic operators
title_full Orthogonality preserving infinite dimensional quadratic stochastic operators
title_fullStr Orthogonality preserving infinite dimensional quadratic stochastic operators
title_full_unstemmed Orthogonality preserving infinite dimensional quadratic stochastic operators
title_sort orthogonality preserving infinite dimensional quadratic stochastic operators
publisher American Institute of Physics
publishDate 2015
url http://irep.iium.edu.my/44787/1/mf-hasan-AIP-2015.pdf
http://irep.iium.edu.my/44787/4/44787_Orthogonality%20preserving%20infinite%20dimensional%20quadratic%20stochastic%20operators_SCOPUS.pdf
http://irep.iium.edu.my/44787/
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4930434
_version_ 1643612642762293248
score 13.211869