Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models

The mechanics of failure in a solder joint under cyclic mechanical loading is quantified and described in this paper. It is postulated that fatigue failure of the solder joint occurs through simultaneous competitive mechanisms of cyclic damage processes occurring through the bulk solder and across s...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaffiar, Norhashimah, Yamin, A.F.M., Loh, W.K., Tamin, M.N.
Format: Conference or Workshop Item
Language:English
Published: 2012
Subjects:
Online Access:http://irep.iium.edu.my/39062/1/EPTC__2012.pdf
http://irep.iium.edu.my/39062/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.iium.irep.39062
record_format dspace
spelling my.iium.irep.390622014-12-24T12:25:12Z http://irep.iium.edu.my/39062/ Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models Shaffiar, Norhashimah Yamin, A.F.M. Loh, W.K. Tamin, M.N. T Technology (General) The mechanics of failure in a solder joint under cyclic mechanical loading is quantified and described in this paper. It is postulated that fatigue failure of the solder joint occurs through simultaneous competitive mechanisms of cyclic damage processes occurring through the bulk solder and across solder/IMC interface. Progressive damage in the bulk solder joint is described using continuum damage model while cohesive zone model simulates the fracture process of the solder/IMC interface. For this purpose, a single-solder joint assembly with Sn-4Ag-0.5Cu (SAC405) solder and SAC405/Cu6Sn5 interface is modeled using finite element (FE) method. Unified inelastic strain model (Anand’s) with optimized parameter values for SAC405 solder represents the strain rate-dependent response of the solder. Cyclic plastic work-based phenomenological continuum damage model and cyclic stress- and energy-based cohesive zone model are employed to simulate damage response of the bulk solder and solder/IMC interface, respectively. Cyclic displacement loading (Δδ = 0.003 mm, R = 0) is prescribed to the edge of the “rigid” tool. Results show that the solder/IMC interface fatigue cracking dominates the fracture process. Fatigue crack initiated at the leading edge of the solder/IMC interface on the tool side of the assembly after accumulated 18 fatigue cycles. Simultaneously, inelastic strain accumulates at the critical material point with a decreasing rate. The predicted bending stress with opposing tensile and compressive stress region shall favor shear-driven fatigue crack diagonally across the bulk solder. 2012-12 Conference or Workshop Item REM application/pdf en http://irep.iium.edu.my/39062/1/EPTC__2012.pdf Shaffiar, Norhashimah and Yamin, A.F.M. and Loh, W.K. and Tamin, M.N. (2012) Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models. In: Proceedings of the 2012 IEEE 14th Electronics Packaging Technology Conference, EPTC 2012, 5th-7th Dec 2012 , Singapore.
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
topic T Technology (General)
spellingShingle T Technology (General)
Shaffiar, Norhashimah
Yamin, A.F.M.
Loh, W.K.
Tamin, M.N.
Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models
description The mechanics of failure in a solder joint under cyclic mechanical loading is quantified and described in this paper. It is postulated that fatigue failure of the solder joint occurs through simultaneous competitive mechanisms of cyclic damage processes occurring through the bulk solder and across solder/IMC interface. Progressive damage in the bulk solder joint is described using continuum damage model while cohesive zone model simulates the fracture process of the solder/IMC interface. For this purpose, a single-solder joint assembly with Sn-4Ag-0.5Cu (SAC405) solder and SAC405/Cu6Sn5 interface is modeled using finite element (FE) method. Unified inelastic strain model (Anand’s) with optimized parameter values for SAC405 solder represents the strain rate-dependent response of the solder. Cyclic plastic work-based phenomenological continuum damage model and cyclic stress- and energy-based cohesive zone model are employed to simulate damage response of the bulk solder and solder/IMC interface, respectively. Cyclic displacement loading (Δδ = 0.003 mm, R = 0) is prescribed to the edge of the “rigid” tool. Results show that the solder/IMC interface fatigue cracking dominates the fracture process. Fatigue crack initiated at the leading edge of the solder/IMC interface on the tool side of the assembly after accumulated 18 fatigue cycles. Simultaneously, inelastic strain accumulates at the critical material point with a decreasing rate. The predicted bending stress with opposing tensile and compressive stress region shall favor shear-driven fatigue crack diagonally across the bulk solder.
format Conference or Workshop Item
author Shaffiar, Norhashimah
Yamin, A.F.M.
Loh, W.K.
Tamin, M.N.
author_facet Shaffiar, Norhashimah
Yamin, A.F.M.
Loh, W.K.
Tamin, M.N.
author_sort Shaffiar, Norhashimah
title Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models
title_short Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models
title_full Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models
title_fullStr Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models
title_full_unstemmed Fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models
title_sort fatigue failure processes in pb-free solder joints using continuum damage and cohesive zone models
publishDate 2012
url http://irep.iium.edu.my/39062/1/EPTC__2012.pdf
http://irep.iium.edu.my/39062/
_version_ 1643611553730134016
score 13.214268