Improvement of artificial neural network model for the prediction of wastewater treatment plant performance
A statistical modeling tool called artificial neural network (ANN) is used in this work to predict the performance of wastewater treatment plant (WWTP). Extensive influent and effluent parameters database containing measured data spanning over two years of period was used to develop and train ANN us...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/2997/1/FinalManuscript_16_05_11.pdf http://irep.iium.edu.my/2997/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.iium.irep.2997 |
---|---|
record_format |
dspace |
spelling |
my.iium.irep.29972012-01-12T07:54:58Z http://irep.iium.edu.my/2997/ Improvement of artificial neural network model for the prediction of wastewater treatment plant performance Jami, Mohammed Saedi Ahmed Kabashi, Nassereldeen Husain, Iman A.F. Abdullah, Norhafiza TD159 Municipal engineering A statistical modeling tool called artificial neural network (ANN) is used in this work to predict the performance of wastewater treatment plant (WWTP). Extensive influent and effluent parameters database containing measured data spanning over two years of period was used to develop and train ANN using ANN toolbox in commercially available software, MATLAB. The data were obtained from one of Sewage Treatment Plant in Malaysia. The input parameters for the ANN were BOD, SS, and COD of the influent, while the output parameters were combination of the effluent characteristics. The networks for single input-single output were compared with those of single input-multiple output. The ANN was developed for raw and screened data and the results were compared for both networks. It was found that the use of data screening is essential to come up with a better ANNs model. From the regression analysis, networks with one hidden layer and 20 neurons were found to be the best one for single input-single output approach. While the best network for the multiple inputs-single output approach was with BOD as outputs and 30 neurons. The second approach which showed a lower RMSE and higher R values was selected. 2011-07-06 Conference or Workshop Item REM application/pdf en http://irep.iium.edu.my/2997/1/FinalManuscript_16_05_11.pdf Jami, Mohammed Saedi and Ahmed Kabashi, Nassereldeen and Husain, Iman A.F. and Abdullah, Norhafiza (2011) Improvement of artificial neural network model for the prediction of wastewater treatment plant performance. In: The 3rd IASTED International Conference on Environmental Management and Engineering (EME), 4 – 6 July 2011, Calgary, Canada. |
institution |
Universiti Islam Antarabangsa Malaysia |
building |
IIUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
International Islamic University Malaysia |
content_source |
IIUM Repository (IREP) |
url_provider |
http://irep.iium.edu.my/ |
language |
English |
topic |
TD159 Municipal engineering |
spellingShingle |
TD159 Municipal engineering Jami, Mohammed Saedi Ahmed Kabashi, Nassereldeen Husain, Iman A.F. Abdullah, Norhafiza Improvement of artificial neural network model for the prediction of wastewater treatment plant performance |
description |
A statistical modeling tool called artificial neural network (ANN) is used in this work to predict the performance of wastewater treatment plant (WWTP). Extensive influent and effluent parameters database containing measured data spanning over two years of period was used to develop and train ANN using ANN toolbox in commercially available software, MATLAB. The data were obtained from one of Sewage Treatment Plant in Malaysia. The input parameters for the ANN were BOD, SS, and COD of the influent, while the output parameters were combination of the effluent characteristics. The networks for single input-single output were compared with those of single input-multiple output. The ANN was developed for raw and screened data and the results were compared for both networks. It was found that the use of data screening is essential to come up with a better ANNs model. From the regression analysis, networks with one hidden layer and 20 neurons were found to be the best one for single input-single output approach. While the best network for the multiple inputs-single output approach was with BOD as outputs and 30 neurons. The second approach which showed a lower RMSE and higher R values was selected. |
format |
Conference or Workshop Item |
author |
Jami, Mohammed Saedi Ahmed Kabashi, Nassereldeen Husain, Iman A.F. Abdullah, Norhafiza |
author_facet |
Jami, Mohammed Saedi Ahmed Kabashi, Nassereldeen Husain, Iman A.F. Abdullah, Norhafiza |
author_sort |
Jami, Mohammed Saedi |
title |
Improvement of artificial neural network model for the prediction of wastewater treatment plant performance |
title_short |
Improvement of artificial neural network model for the prediction of wastewater treatment plant performance |
title_full |
Improvement of artificial neural network model for the prediction of wastewater treatment plant performance |
title_fullStr |
Improvement of artificial neural network model for the prediction of wastewater treatment plant performance |
title_full_unstemmed |
Improvement of artificial neural network model for the prediction of wastewater treatment plant performance |
title_sort |
improvement of artificial neural network model for the prediction of wastewater treatment plant performance |
publishDate |
2011 |
url |
http://irep.iium.edu.my/2997/1/FinalManuscript_16_05_11.pdf http://irep.iium.edu.my/2997/ |
_version_ |
1643605061150965760 |
score |
13.209306 |