Forecasting of Electricity Demand in Malaysia with Seasonal Highly Volatile Characteristics using SARIMA–GARCH Model
Developing an accurate forecasting model for electricity demand plays a vital role in maximising the efficiency of the planning process in the power generation industries. The time series data of electricity demand in Malaysia is highly volatile with seasonal characteristics. This study aims to eval...
保存先:
主要な著者: | Zaim, Syarranur, Wan Yusoff, Wan Nur Syahidah, Mohamad, Nurul Najihah, Ahmad Radi, Noor Fadhilah, Yaziz, Siti Roslindar |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
UTM Press
2023
|
主題: | |
オンライン・アクセス: | http://irep.iium.edu.my/119185/6/119185_Forecasting%20of%20Electricity.pdf http://irep.iium.edu.my/119185/ https://matematika.utm.my/index.php/matematika/article/view/1512 https://doi.org/10.11113/matematika.v39.n3.1512 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Forecasting of Electricity Demand in Malaysia with Seasonal Highly Volatile Characteristics using SARIMA – GARCH Model
著者:: Syarranur, Zaim, 等
出版事項: (2023) -
Electricity demand forecasting in Malaysia using seasonal Box-Jenkins model
著者:: Syarranur, Zaim, 等
出版事項: (2025) -
Forecasting model of air pollution index using generalized autoregressive conditional heteroskedasticity family (GARCH).
著者:: Zamrus, Nurul Asyikin, 等
出版事項: (2022) -
Comparing model of air pollution index using generalized autoregressive conditional heteroskedasticity family (GARCH)
著者:: Zamrus, Nurul Asyikin, 等
出版事項: (2024) -
Modified Box-Jenkins and GARCH for forecasting highly volatile time series data
著者:: Siti Roslindar, Yaziz
出版事項: (2019)