Computational analysis of biological data: Where are we?

There has been a great development in the field of computational modeling and simulation in biomedical research during the last ten years, in particular, in brain stimulation of Parkinson’s disease (PD) patients and, recently, even in that of Alzheimer’s disease (AD) patients. Computer modeling allo...

Full description

Saved in:
Bibliographic Details
Main Authors: Soreq, Lilach, Mohamed, Wael Mohamed Yousef
Other Authors: Yee, Siew Choong
Format: Book Chapter
Language:English
English
Published: Bentham Science Publishers 2024
Subjects:
Online Access:http://irep.iium.edu.my/114052/3/114052_Computational%20analysis%20of%20biological%20data%20Where%20are%20we_chapter.pdf
http://irep.iium.edu.my/114052/4/114052_Computational%20analysis%20of%20biological%20data%20Where%20are%20we_book.pdf
http://irep.iium.edu.my/114052/
https://www.eurekaselect.com/chapter/22889
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.iium.irep.114052
record_format dspace
spelling my.iium.irep.1140522024-08-26T06:16:18Z http://irep.iium.edu.my/114052/ Computational analysis of biological data: Where are we? Soreq, Lilach Mohamed, Wael Mohamed Yousef R Medicine (General) There has been a great development in the field of computational modeling and simulation in biomedical research during the last ten years, in particular, in brain stimulation of Parkinson’s disease (PD) patients and, recently, even in that of Alzheimer’s disease (AD) patients. Computer modeling allows such electrical stimulations using statistics, bioinformatics and advanced machine-learning algorithms. The current book chapter discusses the advantages of computational modeling in studying biomedical research. Using computational modeling, classification algorithms can be applied to microarray and RNA sequencing data (such as hierarchical clustering - HCL, t-SNE and principal component analysis - PCA), and high-resolution images can be generated based on the analyzed data and patient samples. Additionally, genomic data can be analyzed from cancer patient samples carrying mutations or exhibiting aneuploidy chromosomal changes (such as lung cancer, breast cancer, cervical cancer, ovarian cancer, glioblastoma and colon cancer). Also, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) can be analyzed. We can identify cellular vulnerabilities associated with aneuploid, and assigned aneuploidy scores can generate mushroom plots on the data. Functional network analyses can highlight altered pathways (such as inflammation and alternative splicing) in patient samples, and cellular composition and lineage-specific analyses can highlight the role of specific cell types (e.g., neurons, microglia – MG oligodendrocytes- OLGs, astrocytes, etc.). Computational platforms/tools, such as Matlab, R, Python, SPSS and MySQL, can be used for analysis. The data can be deposited in the Gene Expression Omnibus (GEO). CRISPR/Cas genomic targets can be identified for therapeutic intervention using computer simulations, and patient survival curves can be computed. Further comparison to mice models can be made. Additionally, human and mouse stem cells can be analyzed, and non-parametric gene ontology (GO) analyses using KolmogorovSmirnov (KS) statistical tests can be applied to microarray or RNA sequencing data. Bentham Science Publishers Yee, Siew Choong 2024-08-18 Book Chapter PeerReviewed application/pdf en http://irep.iium.edu.my/114052/3/114052_Computational%20analysis%20of%20biological%20data%20Where%20are%20we_chapter.pdf application/pdf en http://irep.iium.edu.my/114052/4/114052_Computational%20analysis%20of%20biological%20data%20Where%20are%20we_book.pdf Soreq, Lilach and Mohamed, Wael Mohamed Yousef (2024) Computational analysis of biological data: Where are we? In: Computational Modeling and Simulation in Biomedical Research. Bentham Science Publishers, pp. 14-38. ISBN 978-981-5165-47-0 https://www.eurekaselect.com/chapter/22889
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
topic R Medicine (General)
spellingShingle R Medicine (General)
Soreq, Lilach
Mohamed, Wael Mohamed Yousef
Computational analysis of biological data: Where are we?
description There has been a great development in the field of computational modeling and simulation in biomedical research during the last ten years, in particular, in brain stimulation of Parkinson’s disease (PD) patients and, recently, even in that of Alzheimer’s disease (AD) patients. Computer modeling allows such electrical stimulations using statistics, bioinformatics and advanced machine-learning algorithms. The current book chapter discusses the advantages of computational modeling in studying biomedical research. Using computational modeling, classification algorithms can be applied to microarray and RNA sequencing data (such as hierarchical clustering - HCL, t-SNE and principal component analysis - PCA), and high-resolution images can be generated based on the analyzed data and patient samples. Additionally, genomic data can be analyzed from cancer patient samples carrying mutations or exhibiting aneuploidy chromosomal changes (such as lung cancer, breast cancer, cervical cancer, ovarian cancer, glioblastoma and colon cancer). Also, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) can be analyzed. We can identify cellular vulnerabilities associated with aneuploid, and assigned aneuploidy scores can generate mushroom plots on the data. Functional network analyses can highlight altered pathways (such as inflammation and alternative splicing) in patient samples, and cellular composition and lineage-specific analyses can highlight the role of specific cell types (e.g., neurons, microglia – MG oligodendrocytes- OLGs, astrocytes, etc.). Computational platforms/tools, such as Matlab, R, Python, SPSS and MySQL, can be used for analysis. The data can be deposited in the Gene Expression Omnibus (GEO). CRISPR/Cas genomic targets can be identified for therapeutic intervention using computer simulations, and patient survival curves can be computed. Further comparison to mice models can be made. Additionally, human and mouse stem cells can be analyzed, and non-parametric gene ontology (GO) analyses using KolmogorovSmirnov (KS) statistical tests can be applied to microarray or RNA sequencing data.
author2 Yee, Siew Choong
author_facet Yee, Siew Choong
Soreq, Lilach
Mohamed, Wael Mohamed Yousef
format Book Chapter
author Soreq, Lilach
Mohamed, Wael Mohamed Yousef
author_sort Soreq, Lilach
title Computational analysis of biological data: Where are we?
title_short Computational analysis of biological data: Where are we?
title_full Computational analysis of biological data: Where are we?
title_fullStr Computational analysis of biological data: Where are we?
title_full_unstemmed Computational analysis of biological data: Where are we?
title_sort computational analysis of biological data: where are we?
publisher Bentham Science Publishers
publishDate 2024
url http://irep.iium.edu.my/114052/3/114052_Computational%20analysis%20of%20biological%20data%20Where%20are%20we_chapter.pdf
http://irep.iium.edu.my/114052/4/114052_Computational%20analysis%20of%20biological%20data%20Where%20are%20we_book.pdf
http://irep.iium.edu.my/114052/
https://www.eurekaselect.com/chapter/22889
_version_ 1809136374136176640
score 13.209306