REGENERATIVE BRAKING SYSTEM USING SUPER CAPACITOR

Recently, a lot of people are concern on the environmental pollution that is getting worse day to day and energy crisis that would implicate to the global economy. Most organizations and car manufacturers are putting to a rest on the dependencies of natural resources and try to find a new solutio...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamad Hanafiah, Mohammad Muzakkir
Format: Final Year Project
Language:English
Published: Universiti Teknologi PETRONAS 2011
Subjects:
Online Access:http://utpedia.utp.edu.my/10578/1/2011%20-%20Regenerative%20Braking%20System%20using%20Supercapacitor.pdf
http://utpedia.utp.edu.my/10578/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, a lot of people are concern on the environmental pollution that is getting worse day to day and energy crisis that would implicate to the global economy. Most organizations and car manufacturers are putting to a rest on the dependencies of natural resources and try to find a new solution to the problems. Therefore, Electric Vehicles (EVs) are seen to be a promising alternative to the current main energy resources, natural gases. Even though the electric vehicles are seen to be the perfect candidate for this problem, EV s are still suffering from the major problem of any EVs that is short driving range. Hence, a system to manage the energy consumption of an EV is should be developed. According to a study on electric car braking energy consumption, the energy consumed during braking is around 43% of the total energy of the whole process [1 ]. When an electric car running in urban city without regenerative braking system, a lot of energy is wasted through the braking, while on the other hand, during the acceleration the battery's current may reach as high as 450 ampere [1 ][2]. A regenerative braking system is comprised of hydraulic motor, hydraulic accumulator, electric controller and other components. During braking, the transmission shaft is still rotating which then will drive the hydraulic pump under the inertia. The rotation allows energy to be regenerated during the braking and will be stored, preventing from the energy to be wasted. During the accelerating, the energy stored from the braking will be used again to feed the energy consumption of the system [3]. Implementing the regenerative braking system allows the energy to be recycled. The energy that will be used during the decelerating and accelerating is merely from the energy used during braking.