Glutathione Functions on Physiological Characters of Corn Plants to Enhance Mn-induced Corn Production
A non-protein thiol, glutathione (GSH), presents abundantly in plant and affects the growth and development of the plants. In this study, the effects of N-acetyl cysteine (NAC), a precursor of GSH, on manganese (Mn)-induced corn production was evaluated. Different Mn concentrations (0.2, 1.5 and 3.0...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
2015
|
Subjects: | |
Online Access: | http://eprints.unisza.edu.my/7024/1/FH02-FBIM-16-04858.pdf http://eprints.unisza.edu.my/7024/2/FH02-FBIM-16-05732.jpg http://eprints.unisza.edu.my/7024/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A non-protein thiol, glutathione (GSH), presents abundantly in plant and affects the growth and development of the plants. In this study, the effects of N-acetyl cysteine (NAC), a precursor of GSH, on manganese (Mn)-induced corn production was evaluated. Different Mn concentrations (0.2, 1.5 and 3.0 ppm of Mn), with or without 100 µM of NAC, were arranged as completely randomised design with 5 replicates. Results show that both NAC and Mn affected plant height and leaf numbers. Treatment of NAC increased Mn-induced relative water content (RWC), photosynthesis (Pn) and photosynthetically active radiation (PAR) in leaves of corn plants. In the Mn-treated plants, chlorophyll (Chl) content, Chl fluorescence (Fm) and quantum yield (Fv/FM) were found significantly higher than the Mn-untreated plants. In addition, corn plants showed improved yield and cob length in NAC-treated plants in the presence of Mn. Thus, this study suggests that NAC might improve some physiological functions of plants to enhance Mn-induced corn production, with 1.5 ppm of Mn showed the best results. |
---|