On the second Hankel determinant of some analytic functions

Let the function f be analytic in zD  z : z 1 and be given by   2 n . n n f z z az      For 0   1, denote by V   and U  , the sets of functions analytic in D, satisfying         '' Re 1 ' 1 0 ' zf z f z f z             ...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas, D. K., Verma, Sarika
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2015
Online Access:http://journalarticle.ukm.my/9732/1/jqma-11-2-paper2.pdf
http://journalarticle.ukm.my/9732/
http://www.ukm.my/jqma/jqma11_2a.html
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ukm.journal.9732
record_format eprints
spelling my-ukm.journal.97322016-12-14T06:50:40Z http://journalarticle.ukm.my/9732/ On the second Hankel determinant of some analytic functions Thomas, D. K. Verma, Sarika Let the function f be analytic in zD  z : z 1 and be given by   2 n . n n f z z az      For 0   1, denote by V   and U  , the sets of functions analytic in D, satisfying         '' Re 1 ' 1 0 ' zf z f z f z                   and         ' Re 1 0 f z zf z z fz            respectively, so that f V   zf 'U  . We give sharp bounds for the Hankel determinant 2 2 2 4 3 H  a a  a for f V   and f U  . Penerbit Universiti Kebangsaan Malaysia 2015-12 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/9732/1/jqma-11-2-paper2.pdf Thomas, D. K. and Verma, Sarika (2015) On the second Hankel determinant of some analytic functions. Journal of Quality Measurement and Analysis, 11 (2). pp. 11-16. ISSN 1823-5670 http://www.ukm.my/jqma/jqma11_2a.html
institution Universiti Kebangsaan Malaysia
building Perpustakaan Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description Let the function f be analytic in zD  z : z 1 and be given by   2 n . n n f z z az      For 0   1, denote by V   and U  , the sets of functions analytic in D, satisfying         '' Re 1 ' 1 0 ' zf z f z f z                   and         ' Re 1 0 f z zf z z fz            respectively, so that f V   zf 'U  . We give sharp bounds for the Hankel determinant 2 2 2 4 3 H  a a  a for f V   and f U  .
format Article
author Thomas, D. K.
Verma, Sarika
spellingShingle Thomas, D. K.
Verma, Sarika
On the second Hankel determinant of some analytic functions
author_facet Thomas, D. K.
Verma, Sarika
author_sort Thomas, D. K.
title On the second Hankel determinant of some analytic functions
title_short On the second Hankel determinant of some analytic functions
title_full On the second Hankel determinant of some analytic functions
title_fullStr On the second Hankel determinant of some analytic functions
title_full_unstemmed On the second Hankel determinant of some analytic functions
title_sort on the second hankel determinant of some analytic functions
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2015
url http://journalarticle.ukm.my/9732/1/jqma-11-2-paper2.pdf
http://journalarticle.ukm.my/9732/
http://www.ukm.my/jqma/jqma11_2a.html
_version_ 1643737884246671360
score 13.211869