Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury
The coexistence of traumatic brain injury (TBI) and cognitive impairment is increasingly common in clinical practice, but current research on identifying biomarkers for such conditions and precise intervention points is insufficient. This study utilized bioinformatics analysis with paired samples to...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2024
|
Online Access: | http://journalarticle.ukm.my/24646/1/SS%2010.pdf http://journalarticle.ukm.my/24646/ https://www.ukm.my/jsm/english_journals/vol53num11_2024/contentsVol53num11_2024.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-ukm.journal.24646 |
---|---|
record_format |
eprints |
spelling |
my-ukm.journal.246462025-01-06T04:36:18Z http://journalarticle.ukm.my/24646/ Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury Jun, Ding Zhi Liang, Wu Xiong, Chen Zheng Mao, Zeng Rui Wang, Shangyuan Zhang, Tang Ming The coexistence of traumatic brain injury (TBI) and cognitive impairment is increasingly common in clinical practice, but current research on identifying biomarkers for such conditions and precise intervention points is insufficient. This study utilized bioinformatics analysis with paired samples to explore potential causal links between inflammatory factors and TBI and cognitive impairment. By constructing a TBI model with Piezo1 gene knockout, we assessed the activation status of microglia in the brain, the differentiation process of oligodendrocyte precursor cells. The study identified a series of inflammatory factors significantly associated with TBI, including C-C motif chemokine 19, C-X-C motif chemokine 5, and interleukin-5. Bioinformatics analysis showed increased expression of CXCL10, CCL2, GNA15, NFKB1, and the top 5 key nodes were identified using the Cytohubba plugin. The experimental results indicated that the knockout of the Piezo1 gene significantly reduced the infiltration of microglia and neuroinflammation in the brain. Penerbit Universiti Kebangsaan Malaysia 2024 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/24646/1/SS%2010.pdf Jun, Ding Zhi and Liang, Wu and Xiong, Chen Zheng and Mao, Zeng Rui and Wang, Shangyuan and Zhang, Tang Ming (2024) Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury. Sains Malaysiana, 53 (11). pp. 3663-3672. ISSN 0126-6039 https://www.ukm.my/jsm/english_journals/vol53num11_2024/contentsVol53num11_2024.html |
institution |
Universiti Kebangsaan Malaysia |
building |
Tun Sri Lanang Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Kebangsaan Malaysia |
content_source |
UKM Journal Article Repository |
url_provider |
http://journalarticle.ukm.my/ |
language |
English |
description |
The coexistence of traumatic brain injury (TBI) and cognitive impairment is increasingly common in clinical practice, but current research on identifying biomarkers for such conditions and precise intervention points is insufficient. This study utilized bioinformatics analysis with paired samples to explore potential causal links between inflammatory factors and TBI and cognitive impairment. By constructing a TBI model with Piezo1 gene knockout, we assessed the activation status of microglia in the brain, the differentiation process of oligodendrocyte precursor cells. The study identified a series of inflammatory factors significantly associated with TBI, including C-C motif chemokine 19, C-X-C motif chemokine 5, and interleukin-5. Bioinformatics analysis showed increased expression of CXCL10, CCL2, GNA15, NFKB1, and the top 5 key nodes were identified using the Cytohubba plugin. The experimental results indicated that the knockout of the Piezo1 gene significantly reduced the infiltration of microglia and neuroinflammation in the brain. |
format |
Article |
author |
Jun, Ding Zhi Liang, Wu Xiong, Chen Zheng Mao, Zeng Rui Wang, Shangyuan Zhang, Tang Ming |
spellingShingle |
Jun, Ding Zhi Liang, Wu Xiong, Chen Zheng Mao, Zeng Rui Wang, Shangyuan Zhang, Tang Ming Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury |
author_facet |
Jun, Ding Zhi Liang, Wu Xiong, Chen Zheng Mao, Zeng Rui Wang, Shangyuan Zhang, Tang Ming |
author_sort |
Jun, Ding Zhi |
title |
Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury |
title_short |
Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury |
title_full |
Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury |
title_fullStr |
Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury |
title_full_unstemmed |
Intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury |
title_sort |
intestinal piezo1 promotes neuroinflammation to facilitate oligodendrocyte ferroptosis post-traumatic brain injury |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
publishDate |
2024 |
url |
http://journalarticle.ukm.my/24646/1/SS%2010.pdf http://journalarticle.ukm.my/24646/ https://www.ukm.my/jsm/english_journals/vol53num11_2024/contentsVol53num11_2024.html |
_version_ |
1821002974078435328 |
score |
13.235796 |