Comparison between satellite-derived rainfall and rain gauge observation over Peninsular Malaysia

Validation of the bias-corrected product of National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre Morphing Technique CMORPH-CRT was conducted using gridded rain gauge dataset of Wong et al. (2011) and rain gauge data from meteorological stations throughout Peninsular Malay...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad Fairudz Jamaluddin,, Muhammad Ikmalnor Mustafa Kamal,, Muhammad Helmi Abdullah,, Amirul Nizam Marodzi,
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2022
Online Access:http://journalarticle.ukm.my/18348/1/6.pdf
http://journalarticle.ukm.my/18348/
https://www.ukm.my/jsm/malay_journals/jilid51bil1_2022/KandunganJilid51Bil1_2022.html
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Validation of the bias-corrected product of National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre Morphing Technique CMORPH-CRT was conducted using gridded rain gauge dataset of Wong et al. (2011) and rain gauge data from meteorological stations throughout Peninsular Malaysia. The CMORPH-CRT was compared for four contrasting topographic sub-regions of Peninsular Malaysia, i.e. west coast (WC), foothills of Titiwangsa range (FT), inland-valley (IN) and east coast (EC). CMORPH-CRT product with grid resolution of 8 km × 8 km at temporal resolution of 1-hour from 00Z January 1998 to 23Z December 2018 was utilized. The results show that CMORPH-CRT are in agreement with the rain gauge data. The CMORPH-CRT performed best over coastal sub-regions but it underestimated over FT sub-region and overestimated at IN. CMORPH-CRT tend to perform better in moderate rather than heavy rainfall events. For extreme weather events, the CMORPH-CRT had shown capability in observing the formation and decay of low-pressure system in Penang during 4th November 2017 and it is in agreement with rain gauge based SPI index i.e. drought conditions over Peninsular Malaysia.