Kinect-based human gait recognition using locally linear embedded and support vector machine

Recognition of human gait could be performed effectively provided that significant gait features are well extracted along with effective recognition process. Thus, the gait features should be selected or optimized appropriately for optimal accuracy during recognition. Therefore, in this research, op...

Full description

Saved in:
Bibliographic Details
Main Authors: Rohilah Sahak,, Nooritawati Md Tahir,, Ahmad Ihsan Mohd Yassin,, Fadhlan Hafizhelmi Kamaruzaman,
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2018
Online Access:http://journalarticle.ukm.my/13800/1/14.pdf
http://journalarticle.ukm.my/13800/
http://www.ukm.my/jkukm/volume-302-2018/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ukm.journal.13800
record_format eprints
spelling my-ukm.journal.138002019-12-19T23:51:10Z http://journalarticle.ukm.my/13800/ Kinect-based human gait recognition using locally linear embedded and support vector machine Rohilah Sahak, Nooritawati Md Tahir, Ahmad Ihsan Mohd Yassin, Fadhlan Hafizhelmi Kamaruzaman, Recognition of human gait could be performed effectively provided that significant gait features are well extracted along with effective recognition process. Thus, the gait features should be selected or optimized appropriately for optimal accuracy during recognition. Therefore, in this research, optimization of gait features for both oblique and frontal view are evaluated for recognition purpose using Locally Linear Embedded (LLE) along with multi-class Support Vector Machine (SVM). Firstly, dynamic gait features for one gait cycle are extracted from each subject’s walking gait that is acquired using Kinect sensor. Next, the extracted gait features were then optimized using LLE known as DG-LLE and further classified by multi-class SVM with Error Correcting Output Code (ECOC) algorithm. Further, to validate the effectiveness of LLE as optimization technique, the proposed method is then compared with another two gait features namely the original gait features known as DG and optimization using Principal Component Analysis labeled as DG-PCA. Results showed that the optimization based on DG-LLE outperformed the other two methods namely DG and DG-PCA for both oblique and frontal views. In addition, DG-LLE method contributed as the highest recognition rate for both frontal and oblique views. Results also confirmed that the accuracy rate for frontal view is higher specifically 98.33% as compared to oblique view with 94.67%. Penerbit Universiti Kebangsaan Malaysia 2018-10 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/13800/1/14.pdf Rohilah Sahak, and Nooritawati Md Tahir, and Ahmad Ihsan Mohd Yassin, and Fadhlan Hafizhelmi Kamaruzaman, (2018) Kinect-based human gait recognition using locally linear embedded and support vector machine. Jurnal Kejuruteraan, 30 (2). pp. 235-247. ISSN 0128-0198 http://www.ukm.my/jkukm/volume-302-2018/
institution Universiti Kebangsaan Malaysia
building Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description Recognition of human gait could be performed effectively provided that significant gait features are well extracted along with effective recognition process. Thus, the gait features should be selected or optimized appropriately for optimal accuracy during recognition. Therefore, in this research, optimization of gait features for both oblique and frontal view are evaluated for recognition purpose using Locally Linear Embedded (LLE) along with multi-class Support Vector Machine (SVM). Firstly, dynamic gait features for one gait cycle are extracted from each subject’s walking gait that is acquired using Kinect sensor. Next, the extracted gait features were then optimized using LLE known as DG-LLE and further classified by multi-class SVM with Error Correcting Output Code (ECOC) algorithm. Further, to validate the effectiveness of LLE as optimization technique, the proposed method is then compared with another two gait features namely the original gait features known as DG and optimization using Principal Component Analysis labeled as DG-PCA. Results showed that the optimization based on DG-LLE outperformed the other two methods namely DG and DG-PCA for both oblique and frontal views. In addition, DG-LLE method contributed as the highest recognition rate for both frontal and oblique views. Results also confirmed that the accuracy rate for frontal view is higher specifically 98.33% as compared to oblique view with 94.67%.
format Article
author Rohilah Sahak,
Nooritawati Md Tahir,
Ahmad Ihsan Mohd Yassin,
Fadhlan Hafizhelmi Kamaruzaman,
spellingShingle Rohilah Sahak,
Nooritawati Md Tahir,
Ahmad Ihsan Mohd Yassin,
Fadhlan Hafizhelmi Kamaruzaman,
Kinect-based human gait recognition using locally linear embedded and support vector machine
author_facet Rohilah Sahak,
Nooritawati Md Tahir,
Ahmad Ihsan Mohd Yassin,
Fadhlan Hafizhelmi Kamaruzaman,
author_sort Rohilah Sahak,
title Kinect-based human gait recognition using locally linear embedded and support vector machine
title_short Kinect-based human gait recognition using locally linear embedded and support vector machine
title_full Kinect-based human gait recognition using locally linear embedded and support vector machine
title_fullStr Kinect-based human gait recognition using locally linear embedded and support vector machine
title_full_unstemmed Kinect-based human gait recognition using locally linear embedded and support vector machine
title_sort kinect-based human gait recognition using locally linear embedded and support vector machine
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2018
url http://journalarticle.ukm.my/13800/1/14.pdf
http://journalarticle.ukm.my/13800/
http://www.ukm.my/jkukm/volume-302-2018/
_version_ 1654961132179292160
score 13.214268