An In-Depth Analysis of Text Clustering Techniques for Identifying Potential Insurance Customers on Social Media: A Machine Learning Perspective
Social media has emerged as a transformative platform for the exchange and dissemination of information. Unlike conventional sources such as online news, social media often offers more real-time and current updates. Effectively harnessing the vast and diverse pool of unstructured data on these p...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
INTI International University
2023
|
Subjects: | |
Online Access: | http://eprints.intimal.edu.my/1884/1/ij2023_71.pdf http://eprints.intimal.edu.my/1884/ https://intijournal.intimal.edu.my |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Social media has emerged as a transformative platform for the exchange and dissemination of
information. Unlike conventional sources such as online news, social media often offers more real-time and current updates. Effectively harnessing the vast and diverse pool of unstructured data on
these platforms requires the extraction of structured information. This research focuses on the
development of a social media web crawler, coupled with the implementation of sophisticated
algorithms like Web Content Mining, Noisy Text Filtering, Named Entity Extraction, Part-Of-Speech (POS) Tagging, and Text Clustering. The aggregated information will be utilized to train
a machine learning model capable of discerning a customer's preferred insurance type—be it
accident, health, car, or life insurance. The overarching objective is to provide insurance
companies with a swift, precise, and cost-effective means of identifying potential customers within
the realm of social media. The result shows that this new technique has successfully identify
relevant topic based on the comments and recommend corresponding insurance to the user |
---|