Prediction of critical total drawdown in sand production from gas wells: Machine learning approach
Sand production is a critical issue in petroleum wells. The critical total drawdown (CTD) is an essential indicator of the onset of sand production. Although some models are available for CTD prediction, most of them are proven to lack accuracy or use commercial software. Furthermore, the previous c...
Saved in:
Main Authors: | Alakbari, F.S., Mohyaldinn, M.E., Ayoub, M.A., Muhsan, A.S., Abdulkadir, S.J., Hussein, I.A., Salih, A.A. |
---|---|
格式: | Article |
出版: |
2022
|
在線閱讀: | http://scholars.utp.edu.my/id/eprint/33890/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141405710&doi=10.1002%2fcjce.24640&partnerID=40&md5=70d4642c31b89d3bf759f3012c03e5aa |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Prediction of critical total drawdown in sand production from gas wells: Machine learning approach
由: Alakbari, Fahd Saeed, et al.
出版: (2023) -
DEVELOPMENT OF CRITICAL TOTAL DRAWDOWN PRESSURE AND GEOMECHANICAL PROPERTIES MODELS: A DATA-DRIVEN APPROACH
由: ALAKBARI, FAHD SAEED
出版: (2023) -
Development of Critical Total Drawdown Pressure and Geomechanical Properties Model : A Data-Driven Approach
由: Alakbari, Fahd Saeed
出版: (2023) -
A decision tree model for accurate prediction of sand erosion in elbow geometry
由: Alakbari, F.S., et al.
出版: (2023) -
An Accurate Reservoir's Bubble Point Pressure Correlation
由: Alakbari, F.S., et al.
出版: (2022)