Prediction of critical total drawdown in sand production from gas wells: Machine learning approach
Sand production is a critical issue in petroleum wells. The critical total drawdown (CTD) is an essential indicator of the onset of sand production. Although some models are available for CTD prediction, most of them are proven to lack accuracy or use commercial software. Furthermore, the previous c...
保存先:
主要な著者: | Alakbari, F.S., Mohyaldinn, M.E., Ayoub, M.A., Muhsan, A.S., Abdulkadir, S.J., Hussein, I.A., Salih, A.A. |
---|---|
フォーマット: | 論文 |
出版事項: |
2022
|
オンライン・アクセス: | http://scholars.utp.edu.my/id/eprint/33890/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141405710&doi=10.1002%2fcjce.24640&partnerID=40&md5=70d4642c31b89d3bf759f3012c03e5aa |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Prediction of critical total drawdown in sand production from gas wells: Machine learning approach
著者:: Alakbari, Fahd Saeed, 等
出版事項: (2023) -
DEVELOPMENT OF CRITICAL TOTAL DRAWDOWN PRESSURE AND GEOMECHANICAL PROPERTIES MODELS: A DATA-DRIVEN APPROACH
著者:: ALAKBARI, FAHD SAEED
出版事項: (2023) -
Development of Critical Total Drawdown Pressure and Geomechanical Properties Model : A Data-Driven Approach
著者:: Alakbari, Fahd Saeed
出版事項: (2023) -
A decision tree model for accurate prediction of sand erosion in elbow geometry
著者:: Alakbari, F.S., 等
出版事項: (2023) -
An Accurate Reservoir's Bubble Point Pressure Correlation
著者:: Alakbari, F.S., 等
出版事項: (2022)