Prediction of critical total drawdown in sand production from gas wells: Machine learning approach
Sand production is a critical issue in petroleum wells. The critical total drawdown (CTD) is an essential indicator of the onset of sand production. Although some models are available for CTD prediction, most of them are proven to lack accuracy or use commercial software. Furthermore, the previous c...
محفوظ في:
المؤلفون الرئيسيون: | Alakbari, F.S., Mohyaldinn, M.E., Ayoub, M.A., Muhsan, A.S., Abdulkadir, S.J., Hussein, I.A., Salih, A.A. |
---|---|
التنسيق: | مقال |
منشور في: |
2022
|
الوصول للمادة أونلاين: | http://scholars.utp.edu.my/id/eprint/33890/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141405710&doi=10.1002%2fcjce.24640&partnerID=40&md5=70d4642c31b89d3bf759f3012c03e5aa |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Prediction of critical total drawdown in sand production from gas wells: Machine learning approach
بواسطة: Alakbari, Fahd Saeed, وآخرون
منشور في: (2023) -
DEVELOPMENT OF CRITICAL TOTAL DRAWDOWN PRESSURE AND GEOMECHANICAL PROPERTIES MODELS: A DATA-DRIVEN APPROACH
بواسطة: ALAKBARI, FAHD SAEED
منشور في: (2023) -
Development of Critical Total Drawdown Pressure and Geomechanical Properties Model : A Data-Driven Approach
بواسطة: Alakbari, Fahd Saeed
منشور في: (2023) -
A decision tree model for accurate prediction of sand erosion in elbow geometry
بواسطة: Alakbari, F.S., وآخرون
منشور في: (2023) -
An Accurate Reservoir's Bubble Point Pressure Correlation
بواسطة: Alakbari, F.S., وآخرون
منشور في: (2022)